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APPENDICES 

Appendix A. Conversion Criteria for Risk of Bias Assessment 

Question Definitely Low Risk of 
Bias (++) 

Probably Low Risk of 
Bias (+) 

Probably High Risk of 
Bias (-/NR) 

Definitely High Risk of 
Bias (--) 

Was the 
administered dose 
or exposure level 
adequately 
randomized? 

There is direct 
evidence that animals 
were allocated to any 
study group (including 
control) using random 
consistent method 
AND there is direct 
concurrent control 
group is used as 
indication that 
randomization covered 
to all study groups 

There is indirect 
evidence that animals 
were allocated to any 
study group (including 
control) using random 
consistent method 
AND there is 
direct/indirect 
evidence that 
concurrent control is 
used as indication that 
randomization covered 
all study groups 
OR 
It is deemed that 
allocation without clear 
random component 
would not appreciably 
bias the result 

There is indirect 
evidence that animals 
were allocated to any 
study group (including 
controls) using the 
non-random method 
OR 
There is indirect 
evidence that there 
was a lack of 
concurrent control 
group 
OR 
There is insufficient 
information provided 
about how subjects 
were allocated to study 
groups (NR) 

There is direct 
evidence that animals 
were allocated to any 
study group (including 
controls) using the 
non-random method 
OR 
There is direct 
evidence that there 
was a lack of 
concurrent control 
group 

Was allocation to 
study groups 
adequately 
concealed? 

There is direct 
evidence at the time of 
assigning study groups 
that the research 
personnel did not know 
what group of animals 
were allocated to AND 
it is unlikely that they 
could broke the 
blinding of allocation 
until the assignment 
was completed 

There is indirect 
evidence at the time of 
assigning study groups 
that the research 
personnel did not know 
what group of animals 
were allocated to AND 
it is unlikely that they 
could broke the 
blinding of allocation 
until the assignment 
was completed 
OR 
It is deemed that 
allocation that lack of 
adequate allocation 
concealment would not 
appreciably bias the 
result 

There is indirect 
evidence at the time of 
assigning study groups 
which the research 
personnel did not know 
what group of animals 
were allocated to AND 
It is likely that they 
could break the 
blinding of allocation 
until the assignment 
was completed 
OR 
There is insufficient 
information provided 
about allocation to 
study groups (NR) 

There is direct 
evidence at the time of 
assigning study groups 
which the research 
personnel did not know 
what group of animals 
were allocated to AND 
It is likely that they 
could have broken the 
blinding of allocation 
until the assignment 
was completed 

Were experimental 
conditions 
identical across 
study groups? 

There is direct 
evidence that same 
vehicle was used in 
control and 
experimental animals 

There is indirect 
evidence that same 
vehicle was used in 
control and 
experimental animals 

There is indirect 
evidence that 
difference vehicle was 
used in control and 
experimental animals 

There is direct 
evidence that 
difference vehicle was 
used in control and 
experimental animals 
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AND evidence that 
non-treatment-related 
experimental 
conditions were 
identical across study 
groups (Study reports 
in detail explicitly) 

AND Identical non-
treatment related 
experimental 
conditions are assumed 
if authors did not 
report differences in 
housing or husbandry 
OR 
It is deemed that 
vehicle used would not 
appreciably bias the 
result AND Identical 
non-treatment related 
experimental 
conditions are assumed 
if authors did not 
report differences in 
housing or husbandry 

OR 
Author did not report 
the vehicle used (NR) 
OR 
There is indirect 
evidence that non-
treatment-related 
experimental 
conditions were not 
comparable between 
study group 

or the control is 
untreated 
OR 
There is direct 
evidence that non-
treatment-related 
experimental 
conditions were not 
comparable between 
study groups 

Were the research 
personnel and 
human subjects 
blinded to the 
study group during 
the study? 

There is direct 
evidence that the 
research personnel 
were adequately 
blinded to study group 
and it is unlikely that 
they broke the blinding 
during the study 

There is direct 
evidence that the 
research personnel 
were adequately 
blinded to the study 
groups AND it is 
unlikely they broke the 
blinding during the 
study 
OR 
It is deemed that lack 
of adequate blinding 
during the study would 
not appreciably bias 
the results 

There is indirect 
evidence that the 
research personnel 
were not adequately 
blinded to study group 
OR 
There is insufficient 
information provided 
about blinding to study 
group (NR) 

There is direct 
evidence that the 
research personnel 
were not adequately 
blinded to study group 

Were outcome 
data complete 
without attrition or 
exclusion from 
analysis? 

There is direct 
evidence that loss of 
animals was 
adequately addressed 
AND reasons were 
documented when 
animal was removed 
from the study 
OR 
Missing data have been 
imputed using 
appropriate methods 
(Ensure that 
characteristics of 
animals are not 
significantly different 

There is indirect 
evidence that loss of 
animals was 
adequately addressed 
and reasons were 
documented when 
animal were removed 
from the study 
OR 
It is deemed that the 
proportion lost would 
not appreciably bias 
the results 

There is indirect 
evidence that loss of 
animal was not 
adequately addressed 
and loss of animals was 
unacceptably large 
OR 
There is insufficient 
information provided 
about loss of animals 
(NR) 

There is direct 
evidence that loss of 
animals was not 
adequately addressed 
AND loss of animal was 
unacceptably large 
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from animals retained 
from the analysis) 

Can we be 
confident in the 
exposure 
characterization? 

There is direct 
evidence that the 
exposure was 
independently 
characterized by the 
researcher and purity 
confirmed as ≥99% for 
single substance or 
non-mixture 
evaluations AND The 
exposure was 
consistently 
administered across 
treatment groups (The 
same method and 
time-frame) 
 

There is indirect 
evidence that the 
exposure was 
independently 
characterized by the 
researcher and purity 
confirmed as ≥99% for 
single substance or 
non-mixture 
evaluations AND there 
is indirect evidence 
that exposure was 
consistently 
administered across 
treatment groups (The 
same method and 
time-frame) 
OR 
There is a direct 
evidence that purity 
was independently 
confirmed as ≥98% 
AND it is deemed that 
impurity up to 2% 
would not appreciably 
bias the results AND 
there is indirect 
evidence that exposure 
was consistently 
administered across 
treatment groups (The 
same method and 
time-frame) 
 

There is indirect 
evidence that the 
exposure was assessed 
using poorly validated 
methods 
OR 
There is insufficient 
information provided 
about the validity of 
the exposure 
assessment method 
but no evidence for 
concern (NR) 
 

There is direct 
evidence that the 
exposure was assessed 
using poorly validated 
methods 

Can we be 
confident in the 
outcome 
assessment? 

There is direct 
evidence that the 
outcome was assessed 
using well-established 
or gold standards 
method AND the 
assessment conducted 
at the same length of 
time in all study groups 
AND there is direct 
evidence that the 
outcome assessors 
were adequately 

There is direct 
evidence that the 
outcome was assessed 
using well-established 
or gold standards 
method AND the 
assessment conducted 
at the same length of 
time in all study groups 
AND there is indirect 
evidence that the 
outcome assessors 
were adequately 

There is indirect 
evidence that the 
outcome assessment 
method is an 
insensitive instrument 
OR 
The length of time 
after initial exposure 
differed by study group 
OR 
There is indirect 
evidence that it was 
possible for outcome 

There is direct 
evidence that the 
outcome assessment 
method is an 
insensitive instrument 
OR 
The length of time 
after initial exposure 
differed by study group 
OR 
There is direct 
evidence that it was 
possible for outcome 
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blinded to the study 
group and it is unlikely 
that they broke the 
blinding prior to 
reporting outcomes 

blinded to the study 
group and it is unlikely 
that they broke the 
blinding prior to 
reporting outcomes 
OR 
It is deemed that the 
outcome assessment 
method used would 
not appreciably bias 
the results AND there 
is indirect evidence 
that the outcome 
assessors were 
adequately blinded to 
the study group and it 
is unlikely that they 
broke the blinding prior 
to reporting outcomes 
OR 
It is deemed that lack 
of adequate blinding of 
outcome assessors 
would not appreciably 
bias the results 

assessors to infer the 
study group prior to 
reporting outcomes 
without sufficient 
quality control 
measures 
OR 
There is insufficient 
information provided 
about blinding of 
outcome assessors 
(NR) 

assessors to infer the 
study group prior to 
reporting outcomes 
without sufficient 
quality control 
measures 

Were all measured 
outcomes 
reported? 

There is direct 
evidence that all of the 
study measured 
outcomes outline in 
the protocol, methods, 
abstract, and/or 
introduction (data that 
relevant for evaluation) 
have been reported 

There is indirect 
evidence that all of the 
study measured 
outcomes outline in 
the protocol, methods, 
abstract, and/or 
introduction (data that 
relevant for evaluation) 
have been reported 
OR 
Analyses that had not 
been planned in 
advance are clearly 
indicated as such AND 
it is deemed that the 
additional analyses 
were appropriate and 
selective reporting 
would not appreciably 
bias the results 

There is indirect 
evidence that all of the 
study measured 
outcomes outline in 
the protocol, methods, 
abstract, and/or 
introduction have been 
reported 
OR 
There is indirect 
evidence that 
unplanned analyses 
were included that may 
appreciably bias results 
OR 
There is insufficient 
information provided 
about selective 
outcome reporting 
(NR) 

There is direct 
evidence that all of the 
study measured 
outcomes outline in 
the protocol, methods, 
abstract, and/or 
introduction have been 
reported 

Were there no 
other potential 
threats to internal 
validity (statistical 

There is direct 
evidence that the 
statistical method 
selected is appropriate 

There is indirect 
evidence that the 
statistical method 
selected is appropriate 

There is insufficient 
information provided 
about selective 
outcome reporting 

There is direct 
evidence that the 
statistical method 
selected is not 
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methods were 
appropriate and 
researchers 
adhered to study 
protocol)? 

(rationale on the 
selection of statistical 
method) AND there is 
indirect evidence that 
the researcher adhere 
to the study protocol 
AND there is direct 
evidence on limitation 
of the study or 
potential confounding 
and modifying 
variables 

(rationale on the 
selection of statistical 
method) AND there is 
indirect evidence that 
the researcher adhere 
to study protocol AND 
there is indirect 
evidence on limitation 
of the study or 
potential confounding 
and modifying 
variables 

(NR) appropriate (rationale 
on the selection of 
statistical method) 
AND/OR There is direct 
evidence that the 
researcher adhere to 
study protocol 
AND/OR there is direct 
evidence that the 
confounding and 
modifying variables 
cause bias in the study 

 

 

 

 

 

 

 

Appendix B. Criteria for Determining Initial Confidence in the Body of Evidence Quality Assessment 

Study Design Features Description 

Controlled Exposure The exposure of the substance should be 
experimentally controlled 

Exposure Conducted before Outcome The exposure assessment showed that the 
exposure occurred before the development of 
the outcome or concurrent with 
aggravation/amplification of an existing 
condition 

Individual Outcome Data The outcomes should be assessed on individual 
level 

Comparison Group Used Appropriate comparison group should be used 
in the study 

Appendix C. Criteria for Determining Final Confidence in the Body of Evidence Quality Assessment 

Domains Description 

Risk of Bias Across Studies Confidence was downgraded if most of the 
information was derived from tier 3 risk of bias 
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study. 

Unexplained Consistency Confidence was downgraded if there is an 
unexplained consistency that not linked to the 
variation in the characteristic of the animal 
model used, exposure or treatment settings, 
and timing of outcome measurement 

Indirectness Confidence was downgraded if the study using 
non-vertebrate mammalian model or 
genetically modified rodents, bird, reptile, 
amphibian, and fish 

Imprecision Confidence was downgraded if the study has a 
large standard deviations and improper 
statistical analysis was used 

Publication Bias Confidence was downgraded if the studies were 
published in abstracts or type of grey literature 
or the conflict of interests present, or 
preliminary study 

Large Magnitude Effect Confidence was increased if statistically 
significant association or causation relationship 
observed 

Dose Response Confidence was increased if non-monotonic 
dose-response observed within studies 

All Plausible Confounding Confidence was increased if the study address 
the possible confounding that might affect the 
interpretation 

Consistency Across Animal Study Confidence was increased if there is a 
consistency across different strain of animals or 
species 
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Appendix D. Risk of Bias Across Studies Tiering Criteria 

Tier 1 : A Study must be 
rated as “definitely low” 
or “probably low” risk 
of bias for key criteria 
AND have most other 
risk of bias criteria 
answered “definitely 
low” or “ probably low” 
risk of bias 
 
Tier 2 : A Study meets 
neither criteria for tier 1 
or tier 3 
 
Tier 3 : A study must be 
rated as “definitely 
high” or “probably high” 
risk of bias for key 
criteria AND have most 
other risk of bias criteria 
answered “definitely 
high” or “probably high” 
risk of bias 

Risk of Bias Domains and Ratings 

Key Criteria Other Risk of Bias Criteria 

Can we be 
confident in the 
exposure 
characterization? 

Can we be 
confident in 
the outcome 
assessment ? 

Were there no 
other potential 
threats to 
internal validity 
(statistical 
methods were 
appropriate and 
researchers 
adhered to 
study protocol)? 

Was the 
administered 
dose or 
exposure 
level 
adequately 
randomized? 

Was 
allocation to 
study groups 
adequately 
concealed? 

Were 
experimenta
l conditions 
identical 
across study 
groups? 

Were the 
research 
personnel and 
human 
subjects 
blinded to the 
study group 
during the 
study? 

Were outcome 
data complete 
without 
attrition or 
exclusion from 
analysis? 

Were all 
measured 
outcomes 
reported? 
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Appendix F. Prisma-P 2020 Checklist 

Section and 

Topic 

Item # Checklist item Location 

where item 

is reported 

TITLE   

Title 1 Identify the report as a systematic review.  Cover Page 

ABSTRACT   

Abstract 2 See the PRISMA 2020 for Abstracts checklist.  Page IV 

INTRODUCTION   

Rationale 3 Describe the rationale for the review in the context of existing knowledge.  Page 1-5 

Objectives 4 Provide an explicit statement of the objective(s) or question(s) the review addresses.  Page 5 

METHODS   

Eligibility 

criteria 

5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.  Page 41-42 

Information 

sources 

6 Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. 

Specify the date when each source was last searched or consulted. 

 Page 42-43 
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Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits used.  Page 42-43 

Selection 

process 

8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened 

each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the 

process. 

 Page 44 

Data collection 

process 

9 Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they 

worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of 

automation tools used in the process. 

 Page 44 

Data items 10a List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain 

in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to 

collect. 

 Page 45-47 

10b List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). 

Describe any assumptions made about any missing or unclear information. 

 - 

Study risk of 

bias assessment 

11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers 

assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process. 

 Page 47 

Effect measures 12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.  - 

Synthesis 

methods 

13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention 

characteristics and comparing against the planned groups for each synthesis (item #5)). 

 Page 45-47 

13b Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or 

data conversions. 

 - 
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13c Describe any methods used to tabulate or visually display results of individual studies and syntheses.  - 

13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe 

the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used. 

 - 

13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-

regression). 

 - 

13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results.  - 

Reporting bias 

assessment 

14 Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).  Page 47 

Certainty 

assessment 

15 Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.  Page 48 

RESULTS   

Study selection 16a Describe the results of the search and selection process, from the number of records identified in the search to the number of studies 

included in the review, ideally using a flow diagram. 

 Page 57 

16b Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.  - 

Study 

characteristics 

17 Cite each included study and present its characteristics.  Page 58 
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Risk of bias in 

studies 

18 Present assessments of risk of bias for each included study.  Page 59 

Results of 

individual 

studies 

19 For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its 

precision (e.g. confidence/credible interval), ideally using structured tables or plots. 

 Page 69, 

Page 77, 

Page 81 

Results of 

syntheses 

20a For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.  Page 57 

20b Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its 

precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of 

the effect. 

 - 

20c Present results of all investigations of possible causes of heterogeneity among study results.  - 

20d Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.  - 

Reporting 

biases 

21 Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.  Page 58 

Certainty of 

evidence 

22 Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.  Page 58 

DISCUSSION   

Discussion 23a Provide a general interpretation of the results in the context of other evidence.  Page 86-

Page 97 
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23b Discuss any limitations of the evidence included in the review.  Page 98 

23c Discuss any limitations of the review processes used.  Page 105 

23d Discuss implications of the results for practice, policy, and future research.  Page 109 

OTHER INFORMATION   

Registration 

and protocol 

24a Provide registration information for the review, including register name and registration number, or state that the review was not 

registered. 

 - 

24b Indicate where the review protocol can be accessed, or state that a protocol was not prepared.  - 

24c Describe and explain any amendments to information provided at registration or in the protocol.  - 

Support 25 Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.  - 

Competing 

interests 

26 Declare any competing interests of review authors.  - 

Availability of 

data, code and 

other materials 

27 Report which of the following are publicly available and where they can be found: template data collection forms; data extracted 

from included studies; data used for all analyses; analytic code; any other materials used in the review. 

 - 
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Appendix F. GENEzolTM Reagent (Geneaid) RNA extraction Protocol 
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Appendix G. GENEzolTM TriRNA Pure Kit (Geneaid) Protocol
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Appendix H. RevertAid First Strand cDNA Synthesis Kit (THermo ScientificTM) Protocol 
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Appendix I. QuantiNova SYBR Green RT-PCR Kit (Qiagen) Protocol 
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Appendix J. Normalized RT-PCR Amplification Curve for Primer Efficiency Determination 

 

Figure J.1. Normalized RT-PCR Amplification Curve for GAPDH. Each dilution of the cDNA was 

analyzed for GAPDH expression in duplicates. Each line represents a single reaction and the Ct-value 

obtained from the replicates were averaged and plotted against the log concentration of the reaction 

 

Figure J.2. Normalized RT-PCR Amplification Curve for THR⍺.. Each dilution of the cDNA was analyzed 

for THR⍺ expression in duplicates. Each line represents a single reaction and the Ct-value obtained 

from the replicates were averaged and plotted against the log concentration of the reaction. 
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Appendix K. Ct-value Data Obtained from RT-PCR Analysis for Primer Efficiency Determination 

Table K.1. Ct-values from RT-PCR Analysis of GAPDH for Primer Efficiency Determination 

Sample Name Line Color Ct-Value Average Ct-value 

GAPDH Non-diluted A  13.86 13.95 

GAPDH Non-diluted B  14.04 

GAPDH 1:10 A  16.89 16.925 

GAPDH 1:10 B  16.96 

GAPDH 1:100 A  20.38 20.365 

GAPDH 1:100 B  20.39 

GAPDH 1:500 A  22.62 22.72 

GAPDH 1:500 B  22.82 

GAPDH 1:1000 A  22.94 22.96 

GAPDH 1:1000 B  22.98 

NTC A  24.4 24,35 

NTC B  24.3  

Table K.2. Ct-values from RT-PCR Analysis of THR⍺  for Primer Efficiency Determination 

Sample Name Line Colour Ct-Value Average Ct-value 

THR⍺  Non-diluted A  23.13 23.16 

THR⍺  Non-diluted B  23.19 

THR⍺  1:10 A  25.92 25.92 

THR⍺  1:10 B  25.92 

THR⍺  1:100 A  29.98 29.95 

THR⍺  1:100 B  29.92 

THR⍺  1:500 A  30.76 31.24 
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THR⍺  1:500 B  31.72 

THR⍺  1:1000 A  32.54 32.96 

THR⍺  1:1000 B  33.38 

NTC A  34.17 34.165 

NTC B  34.16  

Appendix L. Normalized RT-PCR Amplification Curve for Gene Expression Analysis 

 

Figure L.1. Normalized RT-PCR Amplification Curve for THR⍺ expression analysis in embryonic  day 16 

mice brain (1st technical replication). Each line represents a single reaction of either BPS or control 

samples. There are 4 samples analyzed from both treatment groups. The Ct-value obtained from this 
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technical replication were averaged with the Ct-value obtained from other technical replicates.

 

Figure L.2. Normalized RT-PCR Amplification Curve for THR⍺ expression analysis in embryonic day 16 

mice brain (2nd technical replication). Each line represents a single reaction of either BPS or control 

samples. There are 4 samples analyzed from both treatment groups. The Ct-value obtained from this 

technical replication were averaged with the Ct-value obtained from other technical replicates. 

 

 

Figure L.3. Normalized RT-PCR Amplification Curve for THR⍺ expression analysis in postnatal day 1 

mice brain (1st technical replication). Each line represents a single reaction of either BPS or control 
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samples. There are 4 samples analyzed from both treatment groups. The Ct-value obtained from this 

technical replication were averaged with the Ct-value obtained from other technical replicates. 

 

Figure L.3. Normalized RT-PCR Amplification Curve for THR⍺ expression analysis in postnatal day 1 

mice brain (2nd technical replication). Each line represents a single reaction of either BPS or control 

samples. There are 4 samples analyzed from both treatment groups. The Ct-value obtained from this 

technical replication were averaged with the Ct-value obtained from other technical replicates. 
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Appendix M.  Ct-value Data Obtained from RT-PCR for Gene Expression Analysis 

Table K.2. Ct-values from RT-PCR Analysis of THR⍺  for Primer Efficiency Determination 

Time point Gene Sample Name Line 
Color 

Ct-value Average  
Ct-value 

Embryonic 
day 16 
Brain 

GAPDH Control 1  11.76 12.78 12.27 

Control 2  12.09 13.09 12.59 

Control 3  11.65 13.07 12.36 

 Control 4  12.08 13.33 12.705 

BPS 1  12.51 13.97 13.24 

BPS 2  12.41 13.5 12.955 

 BPS 3  11.62 13.44 12.53 

BPS 4  11.89 13.22 12.555 

NTC  - 26.8 - 

THR⍺ Control 1  17.41 18.73 18.07 

Control 2  17.57 19.05 18.31 

Control 3  17.09 18.27 17.68 

Control 4  17.83 18.94 18.385 

BPS 1  19.1 20.49 19.795 

BPS 2  19.38 20.91 20.145 

BPS 3  17.64 18.88 18.26 

BPS 4  17.62 18.74 18.18 

NTC  - - - 

Postnatal 
day 1 brain 

GAPDH Control 1  16.79 14.85 15.82 

Control 2  14.51 15.64 15.075 

Control 3  16.34 15.04 15.69 

Control 4  14.1 14.79 14.445 

BPS 1  13.94 14.5 14.22 

BPS 2  18 15.41 16.705 
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BPS 3  15.52 15.11 15.315 

BPS 4  14.4 16.24 15.32 

NTC  - 30.19 15.82 

THR⍺ Control 1  20.6 21.08 20.84 

Control 2  19.84 20 19.92 

Control 3  19.76 19.98 19.87 

Control 4  20.15 19.77 19.96 

BPS 1  20.2 20.07 20.135 

BPS 2  20.81 20.94 20.875 

BPS 3  20.13 20.47 20.3 

BPS 4  20.36 20.27 20.315 

NTC  - 32.31 - 

       
 

Appendix N. Melting Curve of RT-PCR for Gene Expression Analysis  

Figure N.1. Melting Curve Analysis of 1st technical replication of THR⍺ expression analysis in 

embryonic day 16 mice brain. Each line represents a single reaction of either BPS or control samples. 
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There is only a single peak observed in each sample indicating no contamination or primer dimer 

formation.  

 

Figure N.2. Melting Curve Analysis of 2nt technical replication of THR⍺ expression analysis in 

embryonic day 16 mice brain. Each line represents a single reaction of either BPS or control samples. 

There is only a single peak observed in each sample indicating no contamination or primer dimer 

formation. 

 

Figure N.3. Melting Curve Analysis of 1nt technical replication of THR⍺ expression analysis in postnatal 

day 1 mice brain. Each line represents a single reaction of either BPS or control samples. There is only 

a single peak observed in each sample indicating no contamination or primer dimer formation. 
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Figure N.4. Melting Curve Analysis of 2nd technical replication of THR⍺ expression analysis in postnatal 

day 1 mice brain. Each line represents a single reaction of either BPS or control samples. There is only 

a single peak observed in each sample indicating no contamination or primer dimer formation. 

Appendix O. Details on Technical Issues due to Nanodrop Imprecision 

Inconsistencies were found on the nanodrop measurement as demonstrated by the 

measurement for sample 3 & 4 from BPS treated group on embryonic day 16. As seen on figure O.1. 

below, the measurement of RNA purity and concentration for sample E16 BPS 3 & 4 showed a good 

result with A260/A280 ratio of 1.95 and concentration of 581.0 ng/µl for sample 3 and A260/A280 ratio 

of 1.95 and concentration of 578.7 ng/µl for sample 4. This measurement was taken on 29th April 2021. 

The same samples then measured on 11th May 2021, following the claims that the nanodrop cannot 

be used and showed a negative result. Surprisingly, the measurement of the same samples showed a 

negative result with no A260/A280 ratio (See figure 0.2). Furthermore, the measurement of nucleus 

free water (blank) showed a positive result with A260/A280 ratio of 48.67 and concentration of 0.5 

ng/µl. Another measurement showed no A260/A280 ratio value and concentration of -35.9 ng/ µl, 

indicating imprecision results generated by Nanodrop used.  
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Figure O.1. Result of Nanodrop Reading of Sample 3 (left) & 4 (right) BPS E16. This measurement was 
taken on 29th April 2021 right after the extraction. 

 

Figure O.2. Result of Nanodrop Reading of Sample 3 (left) & 4 (right) BPS E16. This measurement was 
taken on 11th May 2021. 

 

Figure O.3. Result of Nanodrop Reading of Nucleus free water (blank). Two measurement was made 
and the results were inconsistent. This measurement was taken on 11th May 2021  


