Chapter 1

Introduction

1.1 Background

Kidneys are organs responsible for the body’s waste and toxin removal, making them a crucial player
in the excretory system (Gounden et al., 2024). A dysfunction and structural anomaly occurring in the
kidneys will lead to various kidney diseases (KDs) according to the KDIGO (Kidney Disease: Improving
Global Outcomes) guidelines. Kidney diseases can be classified according to the cause, severity of
outcome, structural abnormality, and duration (Lameire et al., 2021). Notably, in terms of duration,
KDs can be classified into two classes: acute kidney disease (AKD) and chronic kidney disease (CKD)

(Levey et al., 2013).

Commonly overlooked as a coexisting condition with diabetes or hypertension, kidney diseases (KDs)
are complex diseases that contribute to global morbidity and mortality. KDs elevate the risks
associated with 5 major lethal diseases: cardiovascular diseases (CVD), malaria, diabetes, HIV (Human
Immunodeficiency Virus), and hypertension (Luyckx et al., 2018). Reported by the Global Burden of
Disease (GBD) study in 2015, it was found that death caused by kidney failure increased by 32% over
10 years, affecting up to 1.2 million people (Wang et al., 2016). Furthermore, kidney diseases are
predicted to continue to be a global health concern in 2050. According to a recent GBD study, it was
predicted that chronic kidney disease would significantly rise in ranking as a leading cause of death by
2050 (Vollset et al., 2024). Additionally, research notes that about 850 million people suffer from
kidney diseases globally, especially those in LICs (low-income countries) and LMICs
(lower-middle-income countries), due to the low availability of KD diagnosis and treatment in their
respective countries (Francis et al.,, 2024). As the knowledge of its expected burden increases, it

becomes apparent that the initial identification of kidney dysfunction is crucial.



Kidney function is typically assessed by measuring the patient’s creatinine level, whether through
blood tests or urine sampling. The normal range for creatinine levels is highly dependent on the age
and sex of the patient. An excessively low or high creatinine level can indicate kidney dysfunction, and
a high creatinine level suggests GFR (glomerular filtration rate) decrease, which is a standard marker
for CKD (Shahbaz et al., 2024). Aside from blood tests and urinalysis, imaging techniques and biopsies

are occasionally used for detailed diagnosis of KDs (Chouhan et al., 2023).

However, these diagnostic methods, particularly biopsies, can lead to some medical concerns, such as
pain, bleeding, infections, and other minor complications due to technical flaws (Kajawo et al., 2021;
Wau et al., 2025; Yahata et al., 2022). Aside from medical concerns, these clinical tests require higher
labor, financial costs, and longer duration while receiving either outpatient or inpatient treatments
(Bedetti et al., 2008; Jgrgensen & Lind, 2022; Milani & lJialal, 2023). Consequently, due to these
disadvantages, there is an increasing demand for research on effective and highly accessible
non-invasive diagnostic tests, like an electrocardiogram (ECG). The simplicity, time efficiency, and cost
efficiency of ECGs are a great asset to expand their diagnostic abilities for other organ dysfunctions or
diseases aside from CVDs (Mamun & Elfouly, 2023). Recent studies have shown that the
implementation of artificial intelligence has expanded the application of ECG in medical diagnostics
for both cardiac and non-cardiac diseases, denoting the growing potential of Al usage in medical

diagnostics (Martinez-Sellés & Marina-Breysse, 2023; Sau et al., 2024).

However, regardless of the potential, there are some major concerns with Al-aided medical diagnosis.
One of them is caused by imbalanced medical data between classes for model predictions. Such
imbalanced data will result in biased and suboptimal Al model performance, reducing the credibility
of the generated prediction model (Cross et al., 2024). In medical settings, the two classes are usually
the healthy (normal) and unhealthy (abnormal) patients, and the healthy samples are usually

considered the majority class. Hence, the algorithms would naturally prioritize this group, leading to



the neglect of the minority unhealthy sample, which is supposed to be the main focus (Salmi et al.,
2024). Therefore, there is a necessity to overcome this common problem to allow the full potential of
Al usage in medical diagnostics, allowing effective diagnosis even for seemingly non-related biological

systems.

1.2 Objective

This research aims to tackle the common challenge of imbalanced data in medical settings,
particularly computer-aided diagnosis. Additionally, this research also aims to reveal the potential of
utilizing electrocardiogram data to assess kidney function using artificial intelligence (Al). Overall, the
objective of this research is to explore the usage of Al in developing prospective medical diagnostics

models that would be more efficient in cost, time, and labor.

1.3 Hypothesis

Considering both the background and objectives of this research, it centrally focuses on how to
overcome imbalanced data in computer-aided medical diagnostics. Thus, this research hypothesizes
that downsampling or balancing the data to make it balanced will provide better results compared to
utilizing imbalanced data in artificial intelligence (Al) models. Additionally, it is also hypothesized that

electrocardiogram (ECG) patterns will be able to identify abnormalities in kidney function.
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