
LINUX AND R COMPUTATIONAL PROTOCOL:
APPLICATION OF STATISTICS AND DATA

SCIENCES IN CANCER

CREATED BY
ARLI ADITYA PARIKESIT

NANDA RIZQIA PRADANA RATNASARI
DAVID AGUSTRIAWAN

COURTESSY OF
DEPARTMENT OF BIOINFORMATICS

INDONESIA INTERNATIONAL INSTITUTE FOR LIFE
SCIENCES
JUNE 2021

Table of Contents

Session : 1 4

Session : 2 16

Session : 3 22

Session : 4 27

Session : 5 40

Session : 6 48

Session : 7 52

Session : 8 64
Installation 64
Creating R Markdown File 65
Running R Markdown File 66
Example 1: 69
Example 2: 70

Session : 9 74

DATA MANIPULATION WITH DPLYR 86

Overview 86

Installation 86
Development version 86

Cheatsheet 86

Usage 87

Session : 10 90

Introduction 96

Motivation 96

Understanding the Grammar of Graphics 99

The Grammar of Graphics | Leland Wilkinson | Springer 100
Preface to First Edition Before writing the graphics for SYSTAT in the 1980's, I began by teaching a seminar
in… 100

A layered grammar of graphics 100
A grammar of graphics is a tool that enables us to concisely describe the components of a graphic. Such a
grammar… 100

Grammar of Graphics in Action 103

A Grammar of Graphics for Python - plotnine 0.4.0 documentation 103
plotnine is an implementation of a grammar of graphics in Python, it is based on ggplot2. The grammar
allows users to… 103

Start with the data 103

2

Visualize two-dimensions (2-D) 103

Visualize three-dimensions (3-D) 104

Visualize four-dimensions (4-D) 105

Visualize data dimensions and statistics 107

Visualize five-dimensions (5-D) 108

Visualize six-dimensions (6-D) 109

Can we go higher? 110

Session : 11 113

Session : 12 118
Creating Vectors 118
Mixing Objects 119
Explicit Coercion 119
Matrices 119
Lists 120
Factors 121
Missing Values 121
Data Frames 122
Names 122

Reading Tabular Data with the readr Package 123

Control Structures 124
if-else 124
for Loops 125
next, break 126

Basic Plotting With ggplot2 127
Initializing a ggplot object 128
Plot aesthetics 128
Creating a basic ggplot plot 130
Geoms 131
Using multiple geoms 134
Constant aesthetics 136
Other useful plot additions 138
Example plots 138
Extensions of ggplot2 144

Session : 13 147

Basic Plotting With ggplot2 147
Initializing a ggplot object 148
Plot aesthetics 148
Creating a basic ggplot plot 150
Geoms 151
Using multiple geoms 154
Constant aesthetics 156
Other useful plot additions 158
Example plots 158
Extensions of ggplot2 164

Session : 14 167

3

Application of Statistics in Cancer 172

4

Indonesia International Institute for Life Science

[BI2107]

LINUX AND R COMPUTATION

Laboratory Procotol Developer and Supervisor(s) Information

Protocol Developer : Arli Aditya Parikesit

Email : arli.parikesit@i3l.ac.id

Supervisor(s) email(s)

David Agustriawan david.agustriawan@i3l.ac.id

Nanda R. Pradana Ratnasari nanda.ratnasari@i3l.ac.id

Notice

1. Operate ONLY the computer assigned to you.

a. If you have any troubleshoot please contact your supervisor or Building

Management

b. Do not rename files, adjust the dock size/icons, move items or files to the trash, or

change the system preferences unless directed to do so

c. Do not exchange keyboards, mice, or other equipment among the computers

without notifying your supervisor

d. Do not bring food or drinks into the lab unless it is in your backpack

2. Remain at your work center, respectful behavior promotes learning. Show integrity and

respect for class materials. Responsibility is fundamental. Misused equipment will be

replaced by those who damage it.

5

mailto:arli.parikesit@i3l.ac.id
mailto:david.agustriawan@i3l.ac.id
mailto:nanda.ratnasari@i3l.ac.id

Linux and R Programming

Session : 1
Date : September 3rd, 2019

Laboratory :Bioinformatics laboratory

Overview

● Ubuntu Linux 16.04, which is the latest long-term support version of Linux, is the most common

Linux that is simple to use, has a lot of graphical tools, connected to huge online community.

● Terminator, Guake and Clipit are features in Linux that can help users to working effectively.

Terminator is another form/version of Linux Terminal that is more convenient to use. When it

comes to working long hours in a terminal, Terminator can help users to work fast and easily split

screen functionally. Then, Guake is another terminal that opens really fast and whenever users

are. Meanwhile, Clipit is a feature for doing copy-paste effectively.

Objective

Understand the function of Terminator, Guake and Clipit and able to operate the features.

Procedure

1. Downloading all the sources files in GitHub repository

(https://github.com/petruisfan/linux-for-developers)

2. Installing and exploring menus in Terminator.

TERMINATOR

Terminator is a terminal emulator like xterm, gnom-terminal, konsole, etc. The Terminator

Application is written and distributed under the terms of the GNU GPL v2 licence. The main

Terminator icon was created by Cory Kontros, and provided under the CC-BY-SA licence.

Graph 1. Default window for Terminator.

There are two kinds of Menu bar in Terminal, they are:

6

https://github.com/petruisfan/linux-for-developers

1. The Context Menu

This is the main menu reached with right-click over a terminal, and will let you access all the

settings, profiles, shortcuts and configurations. It is however kept brief to avoid the

mega-menus that sometimes grow unchecked.

2. The Grouping Menu

This is reached with a click on the trio of coloured boxes in the titlebar. Later, when we cover

Grouping and broadcasting to multiple terminals we will cover this properly. For now it is

enough to know where it is and how to trigger it.

Graph 2. Two kinds of Menu in Terminators

(You will never see a window that looks like this, as it is impossible to have both menus up at

the same time)

The Context Menu

There are five parts of the context menus which are:

- The standard Copy and Paste for text that has been highlighted with the mouse. Shortcut for

Copy is Shift+Ctrl+C and shortcut for Paste is Shift+Ctrl+V.

- Split Horizontally and Split Vertically are used to divide the current space for the current

terminal half.

● Ctrl + Shift + O to split the screen horizontally

● Ctrl + Shift + E to split the screen vertically

● Ctrl + Shift + T to create or open a new tab

7

Graph 3. Terminal window that has been divided

- Close menu. Shortcut for this menu is Ctrl + Shift + W or Ctrl + D.

- Zoom terminal will zoom into the current terminal hiding all other terminals and tabs, and

increasing the the size of the font. There are some shortcuts in this menus:

● Ctrl + Shift + Arrow to resize the screen

● Ctrl + + or Ctrl + - to zoom in or to zoom out the screen

- The fifth part of the menu has three items, which are:

● Show scrollbar will toggle the scrollbar on a per terminal basis. There is also a way to

define this in the Profiles.

● Preferences lets users configure and tune Terminator to better suit the needs

● Encodings will allow user to select a different encoding to the default of UTF-8.

Preferences Windows

Global

Graph 4. Global – Preferences Window

Behaviour

- Window state (default: Normal)

This will determine what happens on startup normally.

• Normal - Window opens as normal.

• Hidden -Window does not open. Useful at login, so it is already available with a shortcut.

8

• Maximised - Window opens maximised in the standard window manager frame.

• Fullscreen - Window opens fullscreen with no window manager frame.

- Always on top (default: off)

Window attempts to remain on top.

- Show on all workspaces (default: off)

The focused window will follow if you switch to a different virtual desktop.

- Hide on lose focus (default: off)

This is a quake console like feature, where the user want the window to vanish when

clicking elsewhere.

This is rather buggy at the moment as it is very easy for the main window to lose focus

and disappear.

- Hide from taskbar (default: off)

The first window opened will not be displayed in the taskbar. Subsequent windows will

show in the taskbar (bug?).

- Window geometry hints (default: off)

If this is checked, then when resizing Terminator will attempt to step the sizing by the

current font, and display a small box with the dimension of the window in characters.

- DBus server (default: on)

If a Terminator DBus server is not already on the session bus, try to start one.

- Mouse focus (default: Click to focus)

By what method the mouse pointer sets the focus on a terminal.

• GNOME Default - Act as per the system settings.

• Click to focus - You must click with in a terminal to make it the focus.

• Follow mouse pointer - Moving the pointer over a terminal makes it the focus.

- Broadcast default (default: Group)

Which broadcast mode should be selected at startup:

• All - All terminals receive keystrokes.

• Group - Only terminals in the same group as the current terminal receive keystrokes.

• None - Only the current terminal receives keystrokes.

- PuTTY style paste (default: off)

Make the right mouse button operate like in PuTTY, so right-click will paste the Primary

selection, and middle-click will open the Context Menu. (For ex-PuTTY users).

- Smart copy (default: on)

If enabled and there is no selection, the shortcut is allowed to pass through. This is useful

for overloading Ctrl+C to copy a selection, or send the SIGINT to the current process if

there is no selection. If not enabled the shortcut does not pass through at all, and the

SIGINT does not get sent.

- Re-use profiles for new terminals (default: off)

Appearance

- Terminator seperator size (default: -1)

This is the width in pixels, and can range from -1 to 5. The value of -1 will take the default

size from the system theme.

- Unfocused terminal font brightness (default: 0.8)

Terminals that do not currently have the focus will can be dimmed to aid focus. The value

can range from 0 (invisible) to 1 (full brightness)

9

- Window borders (default: on)

The window manager frame can be removed from your windows.

- Tab position (default: Top)

Where the tabs will be located within the window

• Top

• Bottom

• Left

• Right

• Hidden - Tabs still work, you just can’t see them.

- Tabs homogeneous (default: on)

Tabs will have equal widths

- Tabs scroll buttons (default: off)

When there are more tabs than can fit within the window buttons will be drawn for moving

left and right.

Terminal Titlebar

There is a table of the colours for the titlebars on the left. These are modelled on those used in a

utility . The three sets (Focused, Inactive and Receiving) will make more sense after reading the

section about The Grouping Menu.

- Hide size from title (default: off)

At the end of the label in the titlebar the size of the terminal is given in characters, i.e.

(80x24).

Enabling this item will disable the size text.

- Use the system font (default: on)

By default the system defined proportional font will be used for the text in the titlebar.

Turning

this off allows you to use a custom font.

- Font (default: inactive, system proportional font)

If active and set, then the custom font to be used in the titlebar.

10

Profile

General

Graph 5. Profile - Preference Window

- Use the system fixed width font (default: on)

By default the system defined proportional font will be used for the text in the terminal.

Turning this off allows you to use a custom font.

- Font (inactive, system fixed width font)

If active and set, then the custom font to be used in the terminal.

- Allow bold text (default: on)

Allows you to disable the use of bold fonts in the terminal.

- Anti-alias text (default: on) †Not in GNOME Terminal

In Terminator you can turn the font smoothing off. This is no longer possible in GNOME

Terminator.

- Show titlebar (default: on)

The titlebar strip across the top of each terminal can be turned off.

- Copy on selection (default: off)

This puts the selection into the copy/paste buffer, as well as being available on middle-click.

- Select-by-word characters (default: -A-Za-z0-9,./?%&#:_)

Using double-click to select text will use this pattern to define what characters are

considered part of the word.

Cursor

- Shape (default: Block)

Set the cursor shape

• Block - Solid rectangle.

• Underline - Single pixel tall horizontal line.

• I-Beam - Single pixel wide vertical line.

- Colour (default: #AAAAAA)

The colour of the cursor.

- Blink (default: on)

Whether the cursor blinks on and off.

Terminal bell

- Titlebar icon (default: on)

11

On the right side of the titlebar a small light-bulb icon will be displayed for a few seconds.

- Visual flash (default: off)

The terminal area will briefly flash.

- Audible beep (default: off)

The normal system beep noise as defined in system settings.

- Window list flash (default: off)

This will set the urgent flag on the window in the taskbar. The actual effect will be taskbar

dependant.

12

Not in Terminator

- Profile name

Our profiles names are in the sidebar to the left.

- Show menubar by default in new terminals

Terminator doesn’t use a traditional menu bar.

- Terminal bell

Terminator has more options, so has four separate options in their own grouping. This item in

GNOME Terminal is the same as Audible beep defined above.

- Use custom default terminal size

Terminator handles window sizes within Layouts, or with Command line options.

Command

- Run commands as a login shell (default: off)

Force the command to run as a login shell.

- Update login records when command is launched (default: on)

Updates login records when a new shell is opened.

- Run a custom command instead of my shell (default: off)

Enable the use of a custom command instead of the users default shell.

- Custom command (default: inactive, empty)

If enabled and set, the users default shell will be replaced with the command specified here.

- When command exits (default: Exit the terminal)

When the running command exits (default or custom) what action should be taken.

• Exit the terminal - Terminal closes, causing layout to adjust.

• Restart the command - Original command restarts immediately.

• Hold the terminal open - The terminal and scrollback will remain visible and accessible until

the user explicitly closes the terminal, or closes the window.

Color

13

Foreground and Background

- Use colours from system theme (default: off)

Use colours as defined in the system theme. Not clear at this time where exactly these come

from. Differences in the GTK2, GTK3 and GNOME Terminal.

- Built-in schemes (default: Grey on black)

Pick a primary colour combination for foreground and background. Again there are

unexplained differences between Terminator and GNOME Terminal.

The list seems to be dynamic and vary depending on the system, with the addition of Custom

which allows setting the colours as desired.

- Text colour (default: inactive, #AAAAAA)

If the Built-in schemes is set to Custom the text colour can be set here.

- Background colour (default: inactive, #000000)

If the Built-in schemes is set to Custom the background colour can be set here.

Palette

- Built-in schemes (default: Ambience)

A predefined colour palette can be selected. Again there are unexplained differences

between

Terminator and GNOME Terminal.

The default here may be system dependant, with Ambience being an Ubuntu colour scheme.

- Colour palette (default: inactive)

If the Palette’s Built-in schemes is set to custom, a set of colour swatches are used to

configure the 16 primary colours of the shell palette.

Not in Terminator

- Bold colour

In theory nothing is stopping us implementing this, it just doesn’t appear to have ever been

added.

- Same as text colour

In truth, I’m not exactly sure what this does, but at a guess, the user can force bold to be

drawn in the same colour as the foreground text.

Background

14

- Solid colour (default: active)

Background of terminal is set to the solid colour set in previous Colours tab.

- Background image (default: inactive)

Background will be an image. There is no scaling done.

- Image file (default: inactive, None)

If Background image is set, then the image to use can be selected here.

- Background image scrolls (default: inactive, on)

If the Background image is set, then setting this to on will cause the background image to

change as the window moves. This is a for of fake transparency.

- Transparent background (default: inactive)

This will attempt true transparency where the windows below are partially visible through

the terminal.

- Shade transparent or image background (default: 0.5)

For Background image and Transparent background this is how much the solid colour should

be blended in, giving a tinting effect.

Scrolling

- Scrollbar is (default: On the right side)

If and where the scrollbar should appear.

• On the left side

• On the right side

• Disabled

- Scrollback (default: 500 lines)

15

How many lines to keep before discarding.

- Infinite Scrollback (default: off)

Lines are never discarded, and all lines since the session began are available.

Note: Data is placed onto the disk by the underlying VTE component, so even after a long

time, the

memory footprint and performance of Terminator should be OK.

- Scroll on output (default: on)

Moves terminal to end of scrollback buffer when any output occurs.

- Scroll on keystroke (default: on)

Moves terminal to end of scrollback buffer when any keypress occurs.

- Use keystrokes to scroll on alternate screen (default: on)

3. Installing and exploring menus in Guake.

a. open the terminal and type sudo apt install guake

b. open the Guake terminal by pressing F12

c. go to shell and click open new tab in current directory button

d. go to scrolling and insert a big number in scrollback lines to ensure that users have enough

space for writting the instructions/codes

e. go to sub-menu appearance and explore/change text color, background color and cursor blink

mode.

f. users can resize the Guake by dragging the margin or make it full screen by pressing F11.

g. Guake does not start automatically when Ubuntu reboot, so users need to add it to a startup

application.

4. Installing and exploring menus in Clipit.

a. open the terminal and type sudo apt install clipit to install it

b. to call ClipIt, hit Ctrl+Alt+H

c. for example:

- open a file in terminal

- then source a text or variable that will be copied

- hit Ctrl+Alt+H on a screen

- a variable/text that has been sourced will appear on the screen then click it.

Discussion.

1. What is the goals of Terminator development project purposed by its creator?

2. Mention some programs that inspired the creator to establish Terminator!

3. Name a terminal that become the basis of Terminator behaviours!

4. Mention some features in Terminators!

5. Terminator is an application written and distributed under the term of a licence. What licence

is it?

16

Indonesia International Institute for Life Science

[BI2107]

LINUX AND R COMPUTATION

Laboratory Procotol Developer and Supervisor(s) Information

Protocol Developer : David Agustriawan

Email : arli.parikesit@i3l.ac.id

Supervisor(s) email(s)

Arli Aditya Parikesit david.agustriawan@i3l.ac.id

Nanda R. Pradana Ratnasari nanda.ratnasari@i3l.ac.id

Notice

1. Operate ONLY the computer assigned to you.

e. If you have any troubleshoot please contact your supervisor or Building

Management

f. Do not rename files, adjust the dock size/icons, move items or files to the trash, or

change the system preferences unless directed to do so

g. Do not exchange keyboards, mice, or other equipment among the computers

without notifying your supervisor

h. Do not bring food or drinks into the lab unless it is in your backpack

2. Remain at your work center, respectful behavior promotes learning. Show integrity and

respect for class materials. Responsibility is fundamental. Misused equipment will be

replaced by those who damage it.

17

mailto:arli.parikesit@i3l.ac.id
mailto:david.agustriawan@i3l.ac.id
mailto:nanda.ratnasari@i3l.ac.id

Linux and R Programming

Session : 2
Date : September 10td, 2019

Laboratory :Bioinformatics laboratory

Overview

● Vim is a commonline interface and a standarlone application in a graphical user interface. It is an

attractive and flexible tool for controlling text editing environment. Vim provides basic commands

to work with CRUD (create, read, update and delete) operations. User, also, can upgrade the

application from shell intepreter to zsh framework. Tha application assign grep comment for

some basic regular expressions and subshells to run embedded commands.

Objective

Students are expected to understand and able to work with Vim, able to manage zsh using the
oh-my-zsh framework, able to write and run super powerful one line commands using
pipes and able to explore the shell scripting libraries.

Procedure

Working with Vim

- Open the terminator and type sudo apt install vim to install Vim

- To start editing text, press the Insert key (this will take us to the insert mode)

- Press the Insert key again to go to replace the mode and override text

- Press the Esc key to exit insert or replace

- Type yy to copy a line

- Type p to paste the line

- Type dd to cut the line

- Type :w to save any changes

- To save the file in editing text, type vim.txt
- Type :q to exit Vim

- Type :wq: Write and exit at the same time

- Type :q!: Exit without saving

Oh-my-zsh

- Open the terminator and type sudo apt install zsh to install zsh

- Go to link https://github.com/robbyrussell/oh-my-zsh, and follow the instructions for

installing the oh-my-zsh framework

o Type sudo apt install git
o Via Curl sh -c "$(curl -fsSL

https://raw.githubusercontent.com/robbyrussell/oh-myzsh/master/tools/install.s

h)"

18

https://github.com/robbyrussell/oh-my-zsh
https://raw.githubusercontent.com/robbyrussell/oh-myzsh/master/tools/install.sh
https://raw.githubusercontent.com/robbyrussell/oh-myzsh/master/tools/install.sh

o Via wget sh -c "$(wget

https://raw.githubusercontent.com/robbyrussell/oh-my-zsh/master/tools/install.s

h -O -)"

- Pick themes by typing ls ~/.oh-my-zsh/themes

- To change the theme, type open~/.zshrc
- Type mkdir ‘directory_name’ to create directory

- Type cd ‘directory_name’ to change the directory into the new one

- Type git init to get started the git

- Create a file by typing touch ‘file_name’
- Type git status to clean and verify directory

You can now see the branch name in the prompt, and there are some other cool features that you

might like to explore:

● Command completion: Start typing, for example, ip, and press Tab. We can see all the

commands that start with IP and we can hit Tab again to start navigating through the

different options. We can use the arrow keys to navigate and hit Enter for the desired
command

● Params completion: For example type ls - and press Tab, and we can see here all
the options and a short description for each. Press Tab again to start navigating
through them and Enter to select.

● History navigation: Click on arrow up key to search in history, filtering by the string
that is written before the cursor. For example, if I type vim and press the arrow up
key, I can see all the files opened with Vim in my history.

● History search: Press Ctrl + R and start typing, and press Ctrl + R again to search the
same occurrence in history. For example ~, and Ctrl + R to see all commands that
have ~ in the string.

● Navigating: Here press Ctrl + arrow left/right to jump one word, Ctrl + W to delete
one word, or Ctrl + U to delete the whole line.

● cd completion case insensitive: For example, cd doc will expand into cd
Documents.

● cd directory completion: If you are lazy and want to specify only a few key letters in
a path, we can do that too. For example, cd /us/sh/zs + Tab will expand into cd
/usr/share/zsh.

19

● Kill completion: Just type kill and Tab and you will see a list of pids to kill.
From there you can choose which process to kill.

● chown completion: Type chown and tab to see a list of users to change owner to.
The same applies to groups.

● Argument expansion: Type ls * and hit Tab. You see * expanded to all files and
folders in the current directory. For a subset, type ls Do* and press Tab. It will only
expand to documents and downloads.

● Adds lots of aliases: Just type alias to see a full list. Some very useful ones are:
.. - go up one folder
… - go up two folders
- - cd o the last directory
ll - ls with -lh

Basic Regular Expression

- Getting started by opening the file to see the content

- Splitting the screen to see both the file and command side by side

- The simplest commond regular expression is to find a single word

● We can use file the grep “word” file.txt command

● word is the string we are looking for and file.txt is the file where we perform

the search

● You can see that grep printed the line that contained our string and the word is

highlighted with another color. This will only match the exact case of the word.

● To do a case insensitive search, grep has an -i option. What this means is
that grep will print the line that contains our word even if the word is in a
different case, by typing grep -i "joe" file.txt

● If we don't know exactly what characters are there in our string, we can use
.* to match any number of characters. Command (.) is to match any
character and (*)is to match previous character multiple times.

● A very common scenario is to find empty lines in a file. For this we use the
grep "^\s$" file.txt command:

o Where \s : This stands for space
o ^ : It's for the beginning of the line
o $: It's for its ending.

● grep can do a neat little trick to count the number of matches. For this, we
use the -c parameter

● To find all the lines that have only letters and space, use:
o grep
o "": Open quotes
o ^$: From the beginning of the line to the end
o []*: Match these characters any number of times
o A-Za-z: Any upper and lower case letter

● If we run the command up to here, we get only the first line. If we add:
o - 0-9 any number we match another two lines,

20

o And if we add: - \s any space, we also match the empty lines and the
all

o caps line
o If we run the command until here, we get only the first line from the

output,
o the rest is not displayed
o Then, if we add 0-9 we match any number (so the first two lines get

matched)
o And if we add \s we match any type of space (so the empty lines are

matched as well)
● grep "^[A-Za-z0-9\s]*$" file is to find something that is not strings.

o grep "^[^0-9]*$" file.txt
This command will find all the lines that do not have only numeric
characters. [^] means match all characters that are not inside, in our
case, any non-number.

o grep "\[.*\]" file.txt
This is for any line that has characters in square brackets.

o To find all lines that have these character !, type this: grep "\!"
file.txt.

Pipes and Subshells
- pwd | wc -c to counth the length of the current path (pwd stands for print

working directory)
- df -h | grep /home | tr -s " " | cut -f 2 -d " " to find used

space on the drive
● "df -h": This shows the disk usage in a human-readable format
● "| grep /home": This shows only the home directory
● '| tr -s " "': This substitutes multiple spaces for just one space
● '| cut -f 2 -d " "': This selects the second column using a space as the

delimiter
- ls -p | grep / | wc -l : To count all the directories in a folder

- Pipes are a great option to find and kill processes. Say we want to find the process ID
of nautilus, and kill all running instances. For this we use:
ps aux | grep nautilus | grep -v grep | awk '{print $2}' |
xargs kill

• ps aux: This prints all processes with PID
• | grep nautilus: Find the ones matching nautilus
• | grep -v grep: Inverts grep to exclude the grep process
• | awk '{print $2}': Selects the second word in the line, which is the PID
• | xargs kill: Here xargs is used to distribute each PID to a kill

command. It is especially used for commands that do not read arguments
from standard input.

- To get the IP address of a specific interface (in our case the wireless interface
wlp3s0), run this: ifconfig wlp3s0 | grep "inet addr:" | awk '{print
$2}' | cut -f 2 -d ":"

• ifconfig wlp3s0: Prints networking information for the wlp3s0 interface

21

• | grep "inet addr:": Gets the line with the IP address
• | awk '{print $2}': Selects the second word in the line (we could have
used cut as well)
• | cut -f 2 -d ":": This is split by ":", and only prints the second word

- In order to get the word frequency, use this: cat lorem.txt | tr " " "\n" |
grep -v "^\s*$" | sed "s/[,.]//g" | sort | uniq -c | sort -n

• cat lorem.txt
• | tr " " "\n": Transforms each space into a new line character
• | grep -v "^\s*$": Eliminates empty lines
• | sed "s/[,.]//g": Eliminates commas (,) and periods (.) to select only the
words
• | sort: Sort the results alphabetically
• | uniq -c: Show only unique lines
• | sort -n: Sorts by numerical value

- $(ls)
The ls subshell returns the files and folders in the current directory and the ls
from
outside the subshell will list those individually, showing additional details:

• Counting all files and directories in the current directory
• Given the fact that commas (,) and periods (.) are hard links that mark the

current and parent directory, we need to count all entries minus these two
• This can be done using the expr $(ls -a | wc -l) - 2 command

22

Indonesia International Institute for Life Science

[BI2107]

LINUX AND R COMPUTATION

Laboratory Procotol Developer and Supervisor(s) Information

Protocol Developer : Arli Aditya Parikesit

Email : arli.parikesit@i3l.ac.id

Supervisor(s) email(s)

David Agustriawan david.agustriawan@i3l.ac.id

Nanda R. Pradana Ratnasari nanda.ratnasari@i3l.ac.id

Notice

1. Operate ONLY the computer assigned to you.

i. If you have any troubleshoot please contact your supervisor or Building

Management

j. Do not rename files, adjust the dock size/icons, move items or files to the trash, or

change the system preferences unless directed to do so

k. Do not exchange keyboards, mice, or other equipment among the computers

without notifying your supervisor

l. Do not bring food or drinks into the lab unless it is in your backpack

2. Remain at your work center, respectful behavior promotes learning. Show integrity and

respect for class materials. Responsibility is fundamental. Misused equipment will be

replaced by those who damage it.

23

mailto:arli.parikesit@i3l.ac.id
mailto:david.agustriawan@i3l.ac.id
mailto:nanda.ratnasari@i3l.ac.id

Linux and R Programming

Session : 3
Date : September 17td, 2019

Laboratory :Bioinformatics laboratory

Overview

Vim is a commonline interface and a standarlone application in a graphical user interface. It is an

attractive and flexible tool for controlling text editing environment. Vim provides basic commands to

work with CRUD (create, read, update and delete) operations. User, also, can upgrade the application

from shell intepreter to zsh framework. Vim can come in handy with its option of encrypting files for

storing your passwords.

Objective

Students are expected to understand on how applying Linux development tools.

Procedure

Let’s start by opening a new hidden file name.vimrc in our home folder and pasting a few lines:

Typing these code on terminal

set nocompatible

filetype off

" Settings to replace tab. Use :retab for replacing tab in existing

files.

set tabstop=4

set shiftwidth=4

set expandtab

" Have Vim jump to the last position when reopening a file

if has("autocmd")

au BufReadPost * if line("'\"") > 1 && line("'\"") <= line("$") |

exe "normal! g'\"" | endif

endif

" Other general vim options:

syntax on

set showmatch " Show matching brackets.

set ignorecase " Do case insensitive matching

set incsearch " show partial matches for a search phrase

set nopaste

set number

set undolevels=1000

● set nocompatible : means that the Vim mode is not compatible for the old Vim. It is the

recommended mode.

24

● The lines starting with ” are comments, so they can be ignored.

● tabstop, shiftwidth, expandtab are comments to use space instead of tabs

● the if and endif function is to always open a file and set the cursor in the same position as the

last time the file was opened

● syntax on: This enables syntax highlighting, so it is easier to read code

● set nopaste: This sets nopaste mode, which means you can paste code without having Vim

try to guess how to format it

● set number: This tells Vim to always show the line numbers

● set undolevels=1000: This tells Vim to remember the last 1000 changes we made to the

file, so that we can easily undo and redo

● set showmatch : to show matching brackets

● set ignorcase : to do case insensitive matching

● set incsearch : to show partial matches for a search phrase

" Always show the status line

set laststatus=2

" Format the status line

set statusline=\ %{HasPaste()}%F%m%r%h\ %w\ \ CWD:\ %r%{getcwd()}%h\ \

\ Line:\ %l\ \ Column:\ %c

" Returns true if paste mode is enabled

function! Has Paste()

if &paste

return 'PASTE MODE '

en

return ''

end function

● set laststatus : to show the status line

● set statusline : to format status line (contains the name of the file, the current directory,

the line and column number)

Vim also has the option of changing the color scheme. To do this, go to

/usr/share/vim/vim74/colors and choose a color scheme from there.

● :colorscheme desert : to set the color scheme

Indentation

Indentation can be done by:

● going into visual model of Vim

● typing V for selecting portions of text or V for selecting full lines

● then pressing > for right indentation or < for left indentation

● repeat . to repeat the last operation

25

Undo and Redo

● any operation can be undone by hitting Ctrl+U
● the operation can be redone by hitting Ctrl+R

Changing the case of lettes

● hitting U (kapital letter) to make all text upper case

● hitting u (lower case) to make all text lower case

● hitting ~ to reverse the current case

Other handy shortcase

● G: Go to end of file
● gg: Go to start of file
● Select all: This is not really a shortcut, but a combination of commands: gg V G, as in

go to start of file, select full line, and move to the end.
● Hitting K for opening man pages for the word under the cursor
● Typing / + the text to find + Enter : for searching a specific text
● Hit n for next occurrence, N for previous occurrence

:1,$s/CWD/DIR/g
:1,$ - start from line one, till the end of the file
s - substitute
/CWD/DIR/ - replace CWD with DIR
g - global, replace all occurrences.

The codes in the box show the way to replace all occurrences of the string CWD with the string DIR

● :10,20s/^/#\ /g : is used to comment out lines 10 to 20 in a shell script

● :30,$d : is for deleting lines of text (deleting everything from line 30 to the end)

● To edit the command we just wrote and run it again, we can open the command history by

hitting q:, navigate to the line containing the command to edit, press Insert, update the line,

and press Esc and Enter to run the command

Sorting

● Let's create a file with unsorted lines of text from the classic lorem ipsum text:

cat lorem.txt | tr " " "\n" | grep -v "^\s*$" | sed
"s/[,.]//g" > sort.txt

● Open sort.txt and run :sort. We see that the lines are all sorted alphabetically.

Spliting the screen for editing text

● Typing split: for horizontal split

● Typing vsplit: for vertical split

● Ctrl+W : to switch between the splitted windows

● Hiting e to open another file in the splitted pane

● To close the window, press :q
● Typing Tab to write filenames

● Hitting :w, followed by the new file name to save the file with different name (save as)

26

● vim file1 file2 file3 to open multiple files

● After multiple files are open, use :bn to move to the next file. To close all the files, hit :qa

● open Vim and hit :Explore to navigate through the directory layout and open new files

● vimdiff : to exit and open two files

Plugin Steroids for Vim
● To manage plugins, let's install the plugin manager pathogen. Open:

https://github.com/tpope/vimpathogen.
● Follow the installation instructions. As you can see, it's a one-line command:

mkdir -p ~/.vim/autoload ~/.vim/bundle && \curl -LSso
~/.vim/autoload/ pathogen.vim https://tpo.pe/pathogen.vim

● And after it finishes, add pathogen to your .vimrc: execute pathogen#infect()
● Open: https://github.com/scrooloose/nerdtree, and follow the

instructions fo installing it:
cd ~/.vim/bundle git clone
https://github.com/scrooloose/nerdtree.git

● Let's open a file and type :NERDtree. We see the tree-like structure of our current folder

here, where we can browse and open new files.

● Another awesome plugin that comes in really handy is called Snipmate and is used for

writing code snippets. To install it, go to this link and follow the instructions:

https://github.com/garbas/vim-snipmate.
● As we can see, before installing snipmate, there is another set of plugins that needs to be

installed:

• git clone https://github.com/tomtom/tlib_vim.git
• git clone
https://github.com/MarcWeber/vim-addon-mw-utils.git
• git clone https://github.com/garbas/vim-snipmate.git
• git clone https://github.com/honza/vim-snippets.git

● Type fun and hit Tab for the function autocomplete.

● To write a function name and hit Tab to go to the next variable to complete

Vim Password Manager

● Typing :set cryptmethod? to see the cryp method that Vim is currently using

● Typing :h 'cryptmethod' to see different alternatives

● Typing :set cryptmethod=blowfish2 to change the encryption method

● vimrc to create default encryption

● Let's open up a new file, add some dummy passwords inside, and save it. The next step is to

encrypt the file with a password, and for this we type :X.
● If you exit without saving the file, the encryption will not be applied. Now, encrypt it again,

save, and exit the file.

27

https://github.com/tpope/vimpathogen
https://tpo.pe/pathogen.vim
https://github.com/scrooloose/nerdtree.git
https://github.com/garbas/vim-snipmate
https://github.com/honza/vim-snippets.git

Indonesia International Institute for Life Science

[BI2107]

LINUX AND R COMPUTATION

Laboratory Procotol Developer and Supervisor(s) Information

Protocol Developer : David Agustriawan

Email : david.agustriawan@i3l.ac.id

Supervisor(s) email(s)

Arli Aditya Parikesit arli.parikesit@i3l.ac.id

Nanda R. Pradana Ratnasari nanda.ratnasari@i3l.ac.id

Notice

1. Operate ONLY the computer assigned to you.

m. If you have any troubleshoot please contact your supervisor or Building

Management

n. Do not rename files, adjust the dock size/icons, move items or files to the trash, or

change the system preferences unless directed to do so

o. Do not exchange keyboards, mice, or other equipment among the computers

without notifying your supervisor

p. Do not bring food or drinks into the lab unless it is in your backpack

2. Remain at your work center, respectful behavior promotes learning. Show integrity and

respect for class materials. Responsibility is fundamental. Misused equipment will be

replaced by those who damage it.

28

mailto:david.agustriawan@i3l.ac.id
mailto:arli.parikesit@i3l.ac.id
mailto:nanda.ratnasari@i3l.ac.id

Linux and R Programming

Session : 4
Date : September 24th, 2019

Laboratory :Bioinformatics laboratory

Overview

Tmux is a program that can help users operating hours of refractor turn into a few minutes. Users can

run long lasting commands, split screens, and never lose your work with the help of the best terminal

multiplexor. It will also help users learning how to discover and interact with your network with the

help of commands like netstat and nmap. Autoenv helps switch environments automatically and how

to use rm command to interact with trash from command line using the trash utility.

Objective

Students are expected to understand on how applying Linux development tools.

Procedure

Sed

Sed one liner is a tool to help user simplifying thousand lines of codes. It has a cryptical usage but

can serve a very powerful tool for quickly editing large amounts of data.

Replacing words

- Firstly, created files that will be edited.

- Then open the file

- Create a simple sed command to replace the word black to white

- Type argument: sed "s/black/white/" 1.txt
It is divided into three parts that are: the first part is s for subtitute; the second part is the

word to be replaced which is black; the third part is the replacement word which is white.

- Now, the result will be printed on the screen, and you can see the word black has been

replaced by white.

The next case is replacing words that are sensitive to the upper and lower case. Users can add

two more characters to the end of the sed command.

29

- g: It means global replace, used for replacing all the occurrences in the file. Without this, it

will only replace the first argument.

- l: means case insensitive search.

sed "s/black/white/gI" 2.txt

- to save the result in file, use the -i argument, which stands for inline replace.

- to backup the result, specify a suffix after -i which will create a backup file.

sed -i.bak "s/black/white/g" 2.txt

Create curly brackets:

- s: It's for substitute.

- g: It's for global; meaning replace all occurrences found.

- \$: This matches all strings starting with the dollar sign. Here dollar needs to be escaped, so

that it's not confused with the start of the row anchor.

- We will enclose the string following $ in (), so that we can reference it in the replace part of

our command.

30

- []: This is for specifying a range of characters

- A-Z: It matches all uppercase characters

- 0-9: It matches all numbers

- _: It matches _

- \+: Any character in the [] must appear one or multiple times

In the replace part, we will use:
- \$: The dollar sign

- { }: The curly brackets we want to add.

- \1: The string that was previously matched in the ()

sed 's/\$\([A-Z0-9_]\+\)/\${\1}/g' 3.txt

Other common scenarios are replacing content in xml or html files.

Here we have a basic html file with a text inside. Now, we know that the
text has more semantic value for search engine optimizations, so maybe we want to make our strong

tags be a simple (bold), and manually decide the words in the page. For this we

say:

- s: This is for substitute.

- <strong: The actual text we are searching for.

- \(\): This will be used again for selecting a piece of text, that will be added back.

- .*: This means any character, found any number of times. We want to select everything

between "<strong" and "strong>".
- </: This is the closing of the tag. This, we want to keep intact.

- <b\1b>: Just add <b b>, and the text that you previously found in the ().

sed "s/<strong\(.*</\)strong>/<b\1b>/g" 4.xml

As you can see, the text was updated correctly, the red class still applies to the new tag, and the old

text is still contained between our tags, which is exactly what we wanted:

31

Deleting (deleting lines of the text)

For example, the file’s name is 5.txt . If we want to delete line 3 from the text, we can type

sed -i 3d 5.txt

- Hit :e, to reload the file in vim, and we see the word dolor is no longer there. If, for

example, we wanted to delete the first 10 lines of the file, we'd simply run:

sed -i 1,10d 5.txt

- Hit :e, and you see the lines are no longer there. For our last example, if we scroll down, we

can see multiple empty lines of text. These can be deleted with:

sed -i "/^$/d" 5.txt

Which stands for:

- ^: Beginning of line anchor

- $: End of line anchor

- d: Delete

Finding files

Git clone https://github.com/electron/electron
And cd into it:

cd electron

32

We see here lots of different files and folders, just like in any normal sized software project. In order

to find a particular file, let's say package.json, we will use:

find . -name package.json

- .: This starts the search in the current folder

- -name: This helps to search the file name

If we were to look for all readme files in the project, the previous command format is not helpful. We

need to issue a case insensitive find. For demonstration purposes, we will also create a readme.md
file:

touch lib/readme.md
We will also use the -iname argument for case insensitive search:

find . -iname readme.md

33

You see here that both readme.md and README.md have been found. Now, if we were to search

for all JavaScript files we would use:

find . -name "*.js"

And as you can see, there are quite a few results. For narrowing down our results, let's limit the find

to the default_app folder:

find default_app -name "*.js"

34

As you can see, there are only two js files in this folder. And if we were to find all files that are not

JavaScript, just add a ! mark before the name argument:

find default_app ! -name "*.js"

You can see here all files that don't end their name with js. If we were to look for all inodes in the

directory, which are of type file, we would use the -type f argument:

35

find lib -type f

In the same way, we'd use -type d to find all directories in a specific location:

find lib -type d

Find can also locate files based on time identifiers. For example, in order to find all files in the

/usr/share directory that were modified in the last 24 hours, issue the following command:

find /usr/share -mtime -1

36

I have quite a big list. You can see the -mtime -3 broadens the list even more. If we were to find,

for example, all the files modified in the last hour, we can use

-mmin -60:
find ~/.local/share -mmin -60

A good folder to search is ~/.local/share, If we use -mmin -90, the list broadens again. Find

can also show us the list of files accessed in the last 24 hours by using the -atime -1 argument

like so:

find ~/.local/share -atime -1

37

While working with lots of project files, if sometimes the case in some projects remain empty, and

we forget to delete them. In order to locate all empty files just do a:

find . -empty

Removing empty files will keep our project clean, but when it comes to reducing size, we sometimes

want to know which files are taking up most of the space. Find can also do searches based on file

size. For example, let's find all the files larger than 1 mega:

find . -size +1M
use -1M for smaller.

if we want to find all javascript files that contain the text manager, we can combine find with

grep, command as follows:

find . -name "*.js" -exec grep -li 'manager' {} \;

Moving on with the practical examples, let's say you have a folder where you want to remove all the

files modified in the last 100 days. We can see our default_app folder contains such files. If we

combine find with rm like so:

find default_app -mtime -100 -exec rm -rf {} \;

38

We can do a quick cleanup. Find can be used for smart backups. For example, if we were to backup

all json files in the project we would combine find with the cpio backup utility using a pipe and a

standard output redirection:

find . -name "*.json" | cpio -o > backup.cpio

- In order to do this, we combine find with wc -l:
find . -iname "*.js" -exec wc -l {} \;

- This will give us all js files and the number of lines. We can pipe this to cut:

find . -iname "*.js" -exec wc -l {} \; | cut -f 1 -d ' '
- To only output the number of lines, and then pipe to the paste command, we do this:

find . -iname "*.js" -exec wc -l {} \; | cut -f 1 -d ' ' |
paste -sd+

- The above will merge all our lines with the + sign as a delimiter. This, of course, can translate

to an arithmetic operation, which we can calculate using the binary calculator (bc):
find . -iname "*.js" -exec wc -l {} \; | cut -f 1 -d ' ' |

paste -sd+ | bc

In order to mass rename files, like changing the file extension name to node for all js files we can

use this command:

find . -type f -iname "*.js" -exec rename "s/js$/node/g" {} \;
You can see the rename syntax is quite similar to sed. In addition, there are no more .js files left,

as all have been renamed to .node:

Tmux

- To get started with tmux on Ubuntu, we first need to install it:

- sudo apt install tmux
- tmux : command to run the tool

- tmux ls: to list the session

- tmux new -s mysession: to start the session

- To list and switch tmux sessions inside tmux, hit Ctrl + B S.
- leave a session running and go back to the normal terminal hit Ctrl + b d

- tmux kill-session -t mysession: to kill the session

- Ctrl + b + " : split the screen horizontally

39

- Ctrl + b + % : split the screen vertically

- Ctrl + b c: to create window

- Ctrl + b w: make a list

- Ctrl + b &: delete

Network

- netstat -plnt : show all open ports on our host

- python -m SimpleHTTPServer: Let's open the most basic HTTP server

- sudo vim /etc/hosts : to connect to servers and the servers change their IP address,

or when you want to emulate a remote server on a local machine.

- sudo apt install nmap: to install the tool

Autoenv

- To install it we go to the official GitHub page and follow the instructions:

https://github.com/kennethreitz/autoenv
- To load the tool (autoenv): source ~/.autoenv/activate.sh
- To open an environment file: vim project1/.env
- To call and set variable named ENV : export ENV=dev
- Hit y to load the file.

-

40

https://github.com/kennethreitz/autoenv

Indonesia International Institute for Life Science

[BI2107]

LINUX AND R COMPUTATION

Laboratory Procotol Developer and Supervisor(s) Information

Protocol Developer : Arli Aditya Parikesit

Email : arli.parikesit@i3l.ac.id

Supervisor(s) email(s)

David Agustriawan david.agustriawan@i3l.ac.id

Nanda R. Pradana Ratnasari nanda.ratnasari@i3l.ac.id

Notice

1. Operate ONLY the computer assigned to you.

q. If you have any troubleshoot please contact your supervisor or Building

Management

r. Do not rename files, adjust the dock size/icons, move items or files to the trash, or

change the system preferences unless directed to do so

s. Do not exchange keyboards, mice, or other equipment among the computers

without notifying your supervisor

t. Do not bring food or drinks into the lab unless it is in your backpack

2. Remain at your work center, respectful behavior promotes learning. Show integrity and

respect for class materials. Responsibility is fundamental. Misused equipment will be

replaced by those who damage it.

41

mailto:arli.parikesit@i3l.ac.id
mailto:david.agustriawan@i3l.ac.id
mailto:nanda.ratnasari@i3l.ac.id

Linux and R Programming

Session : 5
Date : October 1st, 2019

Laboratory :Bioinformatics laboratory

Overview

ImageMagick is used to process all our images automatically. Git flow branching model is utilized to

help merging git conflicts using command line. It also can save the day by proxying requests coming

from the internet to our laptop. We will also explore the versatile query capabilities with JSON.

Objective

Students are expected to understand on how applying Linux development tools.

Procedure

Building a web server
- We have prepared a basic demo html file that contains a button, a div, a jquery

function (for helping us do some ajax calls) and a script that will try to load static
content from our server and put the content inside the div tag

- The script is trying to load a simple text file on the disk, /file:

- If we open this file inside our browser, we can see the page content:

42

- In order to start an HTTP server in the same folder as the file, we type the following
command:
python -m SimpleHTTPServer

- To open the address in the browser: Click on the Click me! Button

Shrinking spells and other ImageMagick
- To install it, run the following:

sudo apt install imagemagick

- Let's use the default Ubuntu backgrounds that can be found in
/usr/share/backgrounds.

- Let's copy the backgrounds to another location so that we don't alter our default ones
- we can see images from ls that it is a JPEG image.

43

- To open it and see how it looks, let's use the eog (eye of gnome) image viewer
- To process an image and what that image actually is can be found out using

ImageMagick’s tool called Identify
identify image_name

- The warty-final-ubuntu.png has similar output format with higher size and
resolution with PNG format.
eog warty-final-ubuntu.png

- In order to convert from one type to the other, we use the imagemagick convert
command with two parameters: input filename and output filename:
convert file.png file.jpg

- If we want to crop a region of the image, we can do that with convert.
convert -crop "500x500+100+100" warty-final-ubuntu.png
warty.jpg

- The convert command is also good at creating images. If we want to create an
image from a text string, we could use the following:
convert -size x80 label:123 nr.jpg

44

- Now let's look at some image shrinking tools outside of imagemagick. The first one
is a png shrinking tool called pngquant. We will install it by typing the following:
sudo apt install pngquant

- To shrink the large PNG imagewe would just call pngquant with the following
image name:
pngquant warty-final-ubuntu.png

- To shrink the JPEG image, we'll install the equivalent of pngquant, which is
jpegoptim:
sudo apt install jpegoptim

45

Go with the Git flow
Git is by far the most popular version control system out there.

- We will be looking at a variation of the git-flow plugin, called gitflowavh,
which adds extra functionality, such as Git hooks, https://github.com/
petervanderdoes/gitflow-avh.

- Once this is done, let's create a dummy project. We'll create an empty directory and
initialize it as a Git repository:
git init

- http://danielkummer.github.io/git-flow-cheatsheet/ provides the
basic tips and tricks to get you started quickly with git-flow.

- The first thing the cheatsheet suggests is to run the following:
git flow init

- To work the develop branch, we can run
git branch

- Feature branches are useful when developing a specific part of functionalityor doing
refactoring, but you don't want to break the existing functionality on the develop
branch. To create a feature branch, just run the following:
git flow feature start feature1

GitFlow will also show us a summary of actions once the feature branch has
finished. This has created a new branch called feature/ feature1, based on the

46

http://danielkummer.github.io/git-flow-cheatsheet/

develop branch and has switched us to that branch. We can also see this from our
handy zsh prompt.

- Let's open up a file, edit, and save it:
git status

Now git commit is using the nano editor for editing the commit message. Since
we prefer vim, let's go ahead and change the default editor to vim. All we need to do
is add this line in our zshrc and reload it:
export EDITOR=vim

- Now when we do a git commit Vim opens up, shows us a summary of the
commit, and closes.

- It's time to merge the feature branch back to develop with the following:
git flow feature finish feature1

- To develope release branch
git flow release start 1.0.0

- To finish our release branch
git flow release finish 1.0.0

- To develope branch
git branch

- To see that the only two available branches are master and develop:
git tag

- To check whether the branch is correct
git flow hotfix start 1.0.1

- To delete our branch:
git flow hotfix delete 1.0.1

- To finish the hotflix
git flow hotfix finish 1.0.1

Merging Git Conflict with Ease
- Let's open the feature file from our previous chapter, edit it, add a new line, and save

it:
git diff

47

- The git diff command will show us colored text explaining the differences between
the git file and the modified file, but some people find this format hard to understand:

- Let's install it using the following:
sudo apt install meld

- To launch Meld
git difftool

- For resolving the conflict, we will be using the following command:
git mergetool

- To add of text:
git commit -a

-

48

Indonesia International Institute for Life Science

[BI2107]

LINUX AND R COMPUTATION

Laboratory Procotol Developer and Supervisor(s) Information

Protocol Developer : David Agustriawan

Email : david.agustriawan@i3l.ac.id

Supervisor(s) email(s)

Arli Aditya Parikesit arli.parikesit@i3l.ac.id

Nanda R. Pradana Ratnasari nanda.ratnasari@i3l.ac.id

Notice

1. Operate ONLY the computer assigned to you.

u. If you have any troubleshoot please contact your supervisor or Building

Management

v. Do not rename files, adjust the dock size/icons, move items or files to the trash, or

change the system preferences unless directed to do so

w. Do not exchange keyboards, mice, or other equipment among the computers

without notifying your supervisor

x. Do not bring food or drinks into the lab unless it is in your backpack

2. Remain at your work center, respectful behavior promotes learning. Show integrity and

respect for class materials. Responsibility is fundamental. Misused equipment will be

replaced by those who damage it.

49

mailto:david.agustriawan@i3l.ac.id
mailto:arli.parikesit@i3l.ac.id
mailto:nanda.ratnasari@i3l.ac.id

Linux and R Programming

Session : 6
Date : October 8th, 2019

Laboratory :Bioinformatics laboratory

Overview

Terminal Art is the part of Terminal that can create something creative and fun to the Terminal.
Terminals can be stylish and can give a good impression, especially the ones we see in the movies.
Colors, ASCII art, and animations can make our terminal come alive.

Objective

Students are expected to understand on how applying Linux development tools.

Procedure

- First of all, the think we need to do is installing the utilities that we will be using for creating

a wonderfull Terminal.

sudo apt install fortune cowsay cmatrix
- Then run this command

fortune
When running this command, you get fortunes, quotes, and jokes, in a random order

- If we combine the command with cowsay, we will get the same fortunes, delivered with an
image of a cow:
fortune | cowsay

To make this recurrent, we can include it as the last line in our zshrc file. Then, every time
we open a new terminal window, a cow will deliver a fortune to us.

- To predict the weather, we can write curl command

curl -4 http://wttr.in/citynames

50

This will show, in a nice format, a three-day weather forecast for the specified city, in this
case, London:

- Now, with our newly learned skills, let's put together a shell script that gives us the weather
forecast:
Open ~/bin/wttr and type the following:
#!/bin/bash
CITY=${1:-London}
curl -4 http://wttr.in/${CITY}
Give it execution rights and assign a default city, let's say London. Now, run this:
wttr

51

These figures show the wheater in London since we put “London” in the command

- We get the weather forecast for London. Now, run this:
wttr paris

- To create matrix or amazing output. Type these command
cmatrix

52

Indonesia International Institute for Life Science

[BI2107]

LINUX AND R COMPUTATION

Laboratory Procotol Developer and Supervisor(s) Information

Protocol Developer : Nanda R. Pradana Ratnasari

Email : nanda.ratnasari@i3l.ac.id

Supervisor(s) email(s)

David Agustriawan david.agustriawan@i3l.ac.id

Nanda R. Pradana Ratnasari nanda.ratnasari@i3l.ac.id

Notice

1. Operate ONLY the computer assigned to you.

y. If you have any troubleshoot please contact your supervisor or Building

Management

z. Do not rename files, adjust the dock size/icons, move items or files to the trash, or

change the system preferences unless directed to do so

aa. Do not exchange keyboards, mice, or other equipment among the computers

without notifying your supervisor

bb. Do not bring food or drinks into the lab unless it is in your backpack

2. Remain at your work center, respectful behavior promotes learning. Show integrity and

respect for class materials. Responsibility is fundamental. Misused equipment will be

replaced by those who damage it.

53

mailto:nanda.ratnasari@i3l.ac.id
mailto:david.agustriawan@i3l.ac.id
mailto:nanda.ratnasari@i3l.ac.id

Linux and R Programming

Session : 7
Date : October 15th, 2019

Laboratory :Bioinformatics laboratory

Overview

R is a language and environment for statistical computing and graphics. R provides a wide variety of

statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification,

clustering, …) and graphical techniques, and is highly extensible. The S language is often the vehicle

of choice for research in statistical methodology, and R provides an Open Source route to

participation in that activity. R is an integrated suite of software facilities for data manipulation,

calculation and graphical display. It includes

● an effective data handling and storage facility,

● a suite of operators for calculations on arrays, in particular matrices,

● a large, coherent, integrated collection of intermediate tools for data analysis,

● graphical facilities for data analysis and display either on-screen or on hardcopy, and

● a well-developed, simple and effective programming language which includes conditionals,

loops, user-defined recursive functions and input and output facilities.

Objective

Students are expected to understand on how applying R development tools.

Procedure

First click on https://www.r-project.org/ then “Download R for Windows” then click on “install R for

the first time” and then click on “Download R 3.1.3 for Windows” (or the more current version).

These clicks are illustrated in the screenshots below show and the arrows point to the location of

each click.

54

A. The 4 Panes

Welcome to RStudio. Below is a screenshot of the RStudio window. The four panes might be

arranged in a different order on your computer, but you should see something similar.

55

1. The console pane is where the action takes place (located lower left in the example above).

From this screenshot you see that this session was running R version 3.1.1 called “Sock it to

Me,” which was released July 10, 2014. The console is the heart of RStudio. You can type

commands directly into the console whenever you see the flashing cursor. Output and error

messages are displayed in the console.

2. The script or source pane (located upper left in the example above) is where you can type

and save your commands and make notes to yourself about projects. When you run a

command from the source pane, the command is sent over to the console pane to be

executed. It is possible to have multiple sources or scripts appear in the source pane, and

they will each have their own tab at the top of the pane. More on this topic later in the Lab.

3. The environment and history pane (located upper right in the example above) is where you

will see the different objects you create or the different datasets you import.

4. The final pane contains everything else including help, plots, packages, etc (located in the

lower right in the example above). You will become more familiar with all of these panes as

you move through the Lab.

B. Calculator in RStudio

One of the more simple uses of RStudio is to use it like a calculator:

1. Locate the flashing cursor in the console pane.

2. Type basic addition (+), subtraction (-), multiplication (*), and division procedures (/) directly

into the console pane. RStudio is mostly flexible about using spaces, so you can include spaces

between the characters or not.

3. Hit enter/return after each command.

4. RStudio will perform the mathematic procedure and return the result in the console in the line

below next to a [1] that indicates the first and, in this case, only result from your command.

5. Try these examples or variations of these examples:

6+6

56

75-25

12 * 3

180 / 12

6. Try more advanced calculator examples:

17.333 * 0.72

10 + 10 * 10

(10 + 10) * 10

10^3

C. Text & Error Messages in RStudio

Text is often referred to as “strings” in programming and in statistics. You will be using text in RStudio,

but in this task below we will use text to see what error messages look like. Text (strings) requires

quotation marks ("") to tell RStudio that the text is different than a command or function.

1. Type a word or words between quotation marks directly into the console pane.

For example: "hello world"

RStudio will print the words in the line below the command as a result.

2. Notice the error message when text is used in the basic calculator commands. Type:

10 – "one"

5 + "apple"

This might be your first error message in RStudio. Notice that there are some details included to help

diagnose the error. Sometimes the error messages can be difficult to understand. The error message

for trying to add the word "apple" to the number 5 tells us that "apple" is nonnumeric. Nothing bad

has happened in RStudio. This error means that RStudio wasn’t able to complete the command.

Errors signal that you should stop and check your command and that it might not be appropriate to

move forward to the next command until the error is resolved.

D. True/ False Questions in RStudio

You can ask RStudio true/false questions.

1. Type each of the true/false examples from the table above in the console pane. Note that you will

get errors if you include spaces within these commands. For example, the command for equals to

is == not = =. Space between the numbers and the commands (see example in the table above) is

a matter of preference.

57

These examples might seem like silly true/ false questions since we know the answers just by

comparing the two values. However, imagine that 17 was a variable containing the number of

arrests of one individual and 16 was a different variable containing the number of arrests of a

second individual. Once we move into objects, these true/false questions become more useful.

E. Creating and Modifying Objects in Rstudio

As you move through the modules you will become familiar with the assign command (<-) in RStudio.

This little arrow assigns everything on the right of the arrow to the item specified on the left of the

arrow.

1. Create a new object called a and assign it the value 15. Then create an object called

b and assign it the value 20:

a <- 15

b <- 20

2. Notice what happens in the environment pane in the upper right. Because these two commands

created new objects called a and b, these new objects appear in the environment pane. Typing

just the name of the object will print the value of the object in the console pane.

a

b

3. Because the new objects a and b contain a single numerical value, you can apply calculator

commands and true/false questions to the objects. These are objects containing numerical

information and not text, so quotation marks are not required and using quotation marks would

refer to something different than the objects a and b. It is also important to note here that

RStudio is sensitive to capitalization. So A and B are not equal to a and b.

Type the following commands directly into the console pane:

a + b

a – b

a * b

a / b

a == b

a != b

a <= b

a >= b

Use objects to build new objects.

1. Build new objects c and d by typing the following command directly into the console pane:

c <- a + b

d <- a * b / c

In general you can name an object whatever you like so long as the object name does not begin

with a number or a set of reserved words: if, for, next, break, in, etc.

58

2. Generate a new object with a more descriptive name.

here.is.an.example.of.an.unnecessarily.long.name <- 1

To modify an already existing object, use the assignment operator (<-) and the original object’s

name.

3. The values for a and b are currently 15 and 20 respectively. Imagine that we need to convert these

values to percentages. Normally, you would generate a new object such as a.percent and

b.percent so as to not lose any data. However, in the example below we replace the old values of

a and b with new percentages.

a <- (15/(15+20)*100)

b <- (20/(15+20)*100)

Notice that the object names for a and b don’t change in the environment pane, but the values

for a and b change after modifying the objects with the commands above.

One of the remarkable features about using RStudio is its capacity to work with and store multiple

objects. We will move to more complicated objects soon, but imagine if your objects a, b, c, and d

were all separate spreadsheets. In statistical software like Stata, SPSS, or Excel, it is only possible

to work within a single spreadsheet at a time. Because RStudio is object based, it can actually

hold multiple spreadsheets so long as each spreadsheet is assigned an object. The number of

databases open in RStudio is a only limited by computer memory and what users can keep track

of.

F. Creating and Modifying Vectors in Rstudio

Usually you won’t assign only a single number to an object, as it would be more efficient to just type

the number than assign it to an object. Objects in RStudio can actually be many things. In this section

of the Lab, we will look at vectors as objects in R. A vector is essentially a list of items. If you were

looking at a spreadsheet in Excel, a vector could be a single column or a single row within the

spreadsheet, but only one. Vectors are the next step up from a single value, but they are a step

below spreadsheets. When you see the word vector, think “ordered list”—a list in which the order of

the items could matter.

Perhaps you have to go to the grocery store after work, and you feel compelled to generate your

shopping list in RStudio. This might not be the most efficient way to generate a list, but it will

certainly introduce the idea of vectors.

The combine command is required to make lists: c()

The combine command tells RStudio that you want to make a vector with all of the items inside of

the parentheses of the combine command.

1. Type the following command into the console panel to generate a new object called grocery.list

that will be a vector containing four items: apples, milk, eggs, and paper towels. Because apples,

milk, eggs, and paper towels are strings and not numbers or objects, we put quotation marks

around each string and separate them with commas.

59

grocery.list <- c("apples", "milk", "eggs", "paper towels")

2. The object grocery.list now appears in the environment pane, but notice what is different

between this object and the other objects. Rather than a single item you see a description of the

vector.

3. Now whenever you want to see your grocery list, just type the name of the object directly into the

console pane. grocery.list

Here is an operation that you can run on a list of strings.

1. You can alphabetize the list using the sort() command. The command below just prints the

alphabetized list in the console pane without actually changing the order of the list.

sort(grocery.list)

The command below actually changes the order of the original list using the assignment

command to replace what is stored in the original object

grocery.list.

grocery.list <- sort(grocery.list)

Square brackets [] are useful in vectors. They are used to slice out pieces of the vector, add pieces

to the vector, or specify which items in a vector need to be changed.

2. Right now grocery.list contains 4 items. If you wanted to inspect a certain item of the list, then

type the number of the item you want in the square brackets. To inspect or retrieve the 1st item

of grocery.list type the following command:

grocery.list[1]

To inspect or retrieve the 3rd item of grocery.list type the following command:

grocery.list[3]

3. Perhaps you forgot some things on your grocery list. You need to add two items: olive oil and

soap. The numbers within square brackets will specify where in

grocery.list you want the new items to go. Since we already have 4 items in

grocery.list, we want to add items number 5 and number 6.

grocery.list[5:6] <- c("olive oil", "soap")

Notice that the number of items in this object changes in the environment pane.

4. You remember that you have a severe allergy to apples, so instead of apples you actually want to

buy bananas. The following command will select the 1st item on the list, which is "apples", and

replace the word "apples" with the word "bananas".

grocery.list[1] <- "bananas"

5. Remember that you can always inspect your changes by just typing the name of the object

directly into the console pane.

60

grocery.list

G. Numerical Vectors in Rstudio

Most of the work that you are likely to do with vectors will be with numbers or categorical variables

that contain strings but only a few categories of strings (e.g., gender, race). This section of the Lab

builds a numerical vector and introduces some functions using that vector.

In the Lab for the next module you will learn how to load data from existing spreadsheets, but for

this example we will need to input the number of arrests in the past year into a vector.

1. Generate a numeric vector based on the table above using the following command.

arrests <- c(1, 2, 3, 1, 5, 15, 1, 1, 1, 2)

2. Uh oh! Person number 6 just got arrested again. Add a 1 to the number of arrests for person #6.

arrests[6] <- arrests[6] + 1

Notice how the square brackets are used on both the right and the left of the assignment arrow.

The right side of the assignment arrow tells RStudio to add 1 to the 6th item in the vector called

arrests. The left side of the assignment arrow tells RStudio that this new information should

replace the 6th item in the vector called arrests.

3. Try out some of the commands below that were introduced earlier in this lab.

arrests + 10

arrests[1] == arrests[4]

arrests[c(1,2,3,4,5)] <= arrests[6]

sort(arrests)

4. Try out these new commands below that can be used with numerical vectors.

61

4. Create a new object that contains the percent of total arrests for each individual.

arrests.percent <- (arrests/sum(arrests))*100

table(arrests.percent)

At this point in Module 1: Introduction RStudio, users are hopefully starting to get the feel of working

in RStudio, understand some of the logic of how RStudio commands are structured, and how to

execute commands in RStudio. In the next part of this Lab, users will learn how to set working

directories and execute scripts.

WORKING DIRECTORY

A working directory is the place on a user’s computer where files will be retrieved from and sent to.

One of the first things required in every RStudio session is to set a working directory. Setting the

working directory tells RStudio where to look for files that you want to import and where to export

files that you create.

Each Module contains a folder with lab materials. Before setting the working directory, you need to

know where the folder is for this Module 1: Introduction where you should have the Lab 1

Files folder.

There are a couple of ways to set the working directory. The first way uses clicking on menus and is

numbered in order below:

1. Select the Session menu located toward the middle of the menu bar at the very top of the

RStudio program.

2. Select Set Working Directory

3. Select Choose Directory

4. Locate the Lab 1 Files folder on your computer

5. Click open

A second alternative way to set the working directory is to type the entire file path name between

the quotation marks of the setwd("") (set working directory) command below. The path name is a

statement of where a file or folder is located on your computer. Path names must include the proper

slash, colons, drives, etc.

setwd("")

To check the contents of the working directory of any RStudio session run the directory command

below dir(). This will display all of the available files from the current directory in the console pane. If

the files listed are incorrect then the working directory has been set incorrectly.

62

6. Type the following command to list the items in your working directory:

dir()

You should see the name of one file called, introduction.R. This introduction.R file is called a script,

which brings you to the next section of this Lab 1 task.

SCRIPT

Scripts are technically text files in which to write programs to be executed within RStudio. A script is

recognizable by its file extension .R. Scripts are similar to do files in Stata or scripts in SPSS. Scripts

offer an organized way to save, inspect, and rerun analyses. Scripts can include user written notes

that explain or organize commands. Scripts can be opened and inspected in a simple text editing

program; however, opening scripts in this way does not permit them to speak with RStudio.

Below is an image showing a section of a script:

Open the introduction.R script now by following the directions below.

7. In RStudio click on the Open icon shaped like a folder located in the upper-left pane of the

RStudio window

63

8. Check that the folder is for Lab 1 Files

9. Select the introduction.R script

The introduction.R script should open in the top-left pane. It will look like a text file with the file

name at the top.

Now that the introduction.R script is open in RStudio, use the introduction.R script to complete the

remainder of the Module 1: Introduction RStudio. Instructions are contained within the RStudio

script.

64

Indonesia International Institute for Life Science

[BI2107]

LINUX AND R COMPUTATION

Laboratory Procotol Developer and Supervisor(s) Information

Protocol Developer : Nanda R. Pradana Ratnasari

Email : nanda.ratnasari@i3l.ac.id

Supervisor(s) email(s)

David Agustriawan david.agustriawan@i3l.ac.id

Nanda R. Pradana Ratnasari nanda.ratnasari@i3l.ac.id

Notice

1. Operate ONLY the computer assigned to you.

cc. If you have any troubleshoot please contact your supervisor or Building

Management

dd. Do not rename files, adjust the dock size/icons, move items or files to the trash, or

change the system preferences unless directed to do so

ee. Do not exchange keyboards, mice, or other equipment among the computers

without notifying your supervisor

ff. Do not bring food or drinks into the lab unless it is in your backpack

2. Remain at your work center, respectful behavior promotes learning. Show integrity and

respect for class materials. Responsibility is fundamental. Misused equipment will be

replaced by those who damage it.

65

mailto:nanda.ratnasari@i3l.ac.id
mailto:david.agustriawan@i3l.ac.id
mailto:nanda.ratnasari@i3l.ac.id

Linux and R Programming

Session : 8
Date : November 5th, 2019

Laboratory :Bioinformatics laboratory

Overview

R is a language and environment for statistical computing and graphics. R provides a wide variety of

statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification,

clustering, …) and graphical techniques, and is highly extensible. The S language is often the vehicle

of choice for research in statistical methodology, and R provides an Open Source route to

participation in that activity. R is an integrated suite of software facilities for data manipulation,

calculation and graphical display. It includes

● an effective data handling and storage facility,

● a suite of operators for calculations on arrays, in particular matrices,

● a large, coherent, integrated collection of intermediate tools for data analysis,

● graphical facilities for data analysis and display either on-screen or on hardcopy, and

● a well-developed, simple and effective programming language which includes conditionals,

loops, user-defined recursive functions and input and output facilities.

Objective

Students are expected to understand on how applying R development tools.

- In week 8, students are expected to understand how to run Rmarkdown.

- Markdown is a simple formatting language designed to make authoring content easy
for everyone. Rather than write in complex markup code (e.g. HTML or LaTex), you
write in plain text with formatting cues.

Procedure

Installation
You can install the R Markdown package from CRAN as follows:

install.packages("rmarkdown")

library("rmarkdown")

R Markdown files are the source code for rich, reproducible documents. You can transform an
R Markdown file in two ways.

1. knit - You can knit the file. The rmarkdown package will call
the knitr package. knitr will run each chunk of R code in the document and append
the results of the code to the document next to the code chunk. This workflow saves
time and facilitates reproducible reports.

66

Consider how authors typically include graphs (or tables, or numbers) in a report. The
author makes the graph, saves it as a file, and then copy and pastes it into the final
report. This process relies on manual labor. If the data changes, the author must repeat
the entire process to update the graph.

In the R Markdown paradigm, each report contains the code it needs to make its own
graphs, tables, numbers, etc. The author can automatically update the report by
re-knitting.

2. convert - You can convert the file. The rmarkdown package will use the pandoc program
to transform the file into a new format. For example, you can convert your .Rmd file
into an HTML, PDF, or Microso� Word file. You can even turn the file into an HTML5 or
PDF slideshow. rmarkdown will preserve the text, code results, and formatting
contained in your original .Rmd file.

Creating R Markdown File
- To create an R Markdown report, open a plain text file and save it with the

extension .Rmd. You can open a plain text file in your scripts editor by clicking File >
New File > Text File in the RStudio toolbar.

- To save the new created file, you can click File > Save

- Find a location where you want to save the file then write the file name with extension
.Rmd

67

- Then the screen will come up as a R markdown file.

Running R Markdown File
.Rmd files are meant to contain text written in markdown⧉. Markdown is a set of conventions
for formatting plain text. You can use markdown to indicate

Emphasis

italic **bold**

italic __bold__

Headers

Header 1

Header 2

Header 3

Lists

Unordered List
* Item 1

* Item 2

+ Item 2a

+ Item 2b

Ordered List
1. Item 1

2. Item 2

3. Item 3

68

http://daringfireball.net/projects/markdown/basics

+ Item 3a

+ Item 3b

Manual Line Breaks

End a line with two or more spaces:
Roses are red,

Violets are blue.

Links

Use a plain http address or add a link to a phrase:
http://example.com

[linked phrase](http://example.com)

Images

Images on the web or local files in the same directory:
![alt text](http://example.com/logo.png)

![alt text](figures/img.png)

Blockquotes

A friend once said:

> It's always better to give

> than to receive.

R Code Blocks

R code will be evaluated and printed
```{r}

summary(cars$dist)

summary(cars$speed)

```

Inline R Code

There were `r nrow(cars)` cars studied

Plain Code Blocks

Plain code blocks are displayed in a fixed-width font but not evaulated
```

This text is displayed verbatim / preformatted

```

Inline Code

We defined the `add` function to

compute the sum of two numbers.

LaTeX Equations

Inline Equation
$equation$

Display Equation
$$ equation $$

69

Horizontal Rule / Page Break

Three or more asterisks or dashes:

Tables

First Header | Second Header

------------- | -------------

Content Cell | Content Cell

Content Cell | Content Cell

Reference Style Links and Images

Links
A [linked phrase][id].

At the bottom of the document:

[id]: http://example.com/ "Title"

Images
![alt text][id]

At the bottom of the document:

[id]: figures/img.png "Title"

Miscellaneous

superscript^2^

subscript~2~

~~strikethrough~~

Typographic Entities

ASCII characters are transformed into typographic HTML entities:

● Straight quotes (" and ') into “curly” quotes
● Dashes (“--” and “---”) into en- and em-dash entities
● Three consecutive dots (“...”) into an ellipsis entity

70

To access the guide, open a .md or .Rmd file in RStudio. Then click the question mark that
appears at the top of the scripts pane. Next, select “Markdown Quick Reference”. RStudio will
open the Markdown Quick Reference guide in the Help pane.

Then, too run the codes, you can click the “Knit” botton by choosing what type of files you
want to demonstrate your document.

Example 1:

Say Hello to markdown

Markdown is an **easy to use** format for writing reports. It resembles what
you naturally write every time you compose an email. In fact, you may have
already used markdown *without realizing it*. These websites all rely on
markdown formatting

* [Github](www.github.com)

* [StackOverflow](www.stackoverflow.com)

* [Reddit](www.reddit.com)

71

This how the R markdown wil be showed in html (website) format:

This how the R markdown wil be showed pdf format:

This how the R markdown wil be showed pdf format:

Example 2:
In the Console, write and work a mini project.

data(cars)
str(cars)
summary(cars)
plot(cars)

In the Script, write codes:
Analysis of the set of cars data set in R
Basic Analysis and Plots

72

Part 1

‘ ‘ ‘ {r}
data(cars)
str(cars)
data(cars)
str(cars)
summary(cars)
plot(cars)
‘ ‘ ‘

Part 2

‘ ‘ ‘ {r}
hist(cars$speed)
boxplot(cars$dist)
‘ ‘ ‘

The mean speed of cars was ‘ r mean(cars$speed) ‘

#The End

Then run the Knit button. The output will be like the graph below:

73

74

Indonesia International Institute for Life Science

[BI2107]

LINUX AND R COMPUTATION

Laboratory Procotol Developer and Supervisor(s) Information

Protocol Developer : Nanda R. Pradana Ratnasari

Email : nanda.ratnasari@i3l.ac.id

Supervisor(s) email(s)

David Agustriawan david.agustriawan@i3l.ac.id

Nanda R. Pradana Ratnasari nanda.ratnasari@i3l.ac.id

Notice

1. Operate ONLY the computer assigned to you.

gg. If you have any troubleshoot please contact your supervisor or Building

Management

hh. Do not rename files, adjust the dock size/icons, move items or files to the trash, or

change the system preferences unless directed to do so

ii. Do not exchange keyboards, mice, or other equipment among the computers

without notifying your supervisor

jj. Do not bring food or drinks into the lab unless it is in your backpack

2. Remain at your work center, respectful behavior promotes learning. Show integrity and

respect for class materials. Responsibility is fundamental. Misused equipment will be

replaced by those who damage it.

75

mailto:nanda.ratnasari@i3l.ac.id
mailto:david.agustriawan@i3l.ac.id
mailto:nanda.ratnasari@i3l.ac.id

Linux and R Programming

Session : 9
Date : November 12th, 2019

Laboratory :Bioinformatics laboratory

Overview

R is a language and environment for statistical computing and graphics. R provides a wide variety of

statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification,

clustering, …) and graphical techniques, and is highly extensible. The S language is often the vehicle

of choice for research in statistical methodology, and R provides an Open Source route to

participation in that activity. R is an integrated suite of software facilities for data manipulation,

calculation and graphical display. It includes

● an effective data handling and storage facility,

● a suite of operators for calculations on arrays, in particular matrices,

● a large, coherent, integrated collection of intermediate tools for data analysis,

● graphical facilities for data analysis and display either on-screen or on hardcopy, and

● a well-developed, simple and effective programming language which includes conditionals,

loops, user-defined recursive functions and input and output facilities.

Objective

Students are expected to understand on how applying R development tools.

- In week 9, students are expected to understand how to run an Application of data

manipulation as it is about fitting models to data.

Procedure

First of all, you are recommended to clear all the data in the exist R script’s memory before write the

new file by typing:

rm(list=ls()) # Clear R's memory

Then, you are suggested to find the directory where your data will be or has already saved, by typing:

setwd('~/DataModule') # Set the working directory

Replace '~/DataModule' with the name of your own directory

The # symbol is typed to informed R that the sentences following are not code.

76

Another step to choose directory can be done using menu in R studio screen.

DATA STRUCTURE

Data structures describe various way of coherently organizing data. The

most common data structures in R are:

• vectors

• matrix

• array

• data frame

• time series

• list

VECTOR

The function c merges an arbitrary number of vectors to one vector. A single number is regarded as a

vector of length one.

The sequence function seq()

The function seq() together with its arguments from, to, by or length is used to generate more

general sequences. Specify the beginning and end of the sequence and either specify the length of

the sequence or the increment.

77

The repeat function rep()

The function rep repeats a given vector. The first argument is the vector and the second argument

can be a number that indicates how often the vector needs to be repeated.

To generate vectors with random elements you can use the functions rnorm or runif. There are more

of these functions.

MATRICES

Converting vectors to matrices with the dim() function

Use the function dim() to convert a vector into a matrix. It does internally add the special attribute

“dim” to the vector.

Generate matrices with the matrix() function

Alternatively use the function matrix() to generate a matrix object.

78

Binding vectors column and row wise

Use the function cbind() to create a matrix by binding two or more vectors as column vectors.

The function rbind() is used to create a matrix by binding two or more vectors as row vectors.

You can multiply a matrix with a vector. The outcome may be surprising:

Matrix multiplication

To perform a matrix multiplication in the mathematical sense, use the operator: %*%. The

dimensions of the two matrices must conform. In the following example the dimensions are wrong:

The transposed matrix

79

A matrix multiplied with its transposed t(x) always works.

ARRAY

Arrays are vectors with a dimension attribute specifying more than two dimensions. A vector is a

one-dimensional array and a matrix is a two dimensional array. As with vectors and matrices, all the

elements of an array must be of the same data type. An example of an array is the threedimensional

array ‘iris3’, which is a built-in data object in R. A three dimensional array can be regarded as a block

of numbers.

The function array() is used to create an array object

80

DATA FRAME

Data frames can be regarded as lists with element of the same length that are represented in a two

dimensional object. Data frames can have columns of different data types and are the most

convenient data structure for data analysis in R. In fact, most statistical modeling routines in R

require a data frame as input.

81

DATA MANIPULATION

Sorting and ordering vectors

Sorting a vector: To sort a vector in increasing order, use the function sort(). You can also use this

function to sort in decreasing order by using the argument decrease = TRUE.

Ordering a vector:With the function order you can produce a permutation vector which indicates

how to sort the input vector in ascending order. If you have two vectors x and y, you can sort x and

permute y in such a way that the elements have the same order as the sorted vector x.

Change the order of elements of y

Reversing a vector: The function rev reverses the order of vector elements. rev(sort(x)) is a sorted

vector in descending order.

Making vectors unique

The function unique returns a vector which only contains the unique values of the input vector. The

function duplicated() returns TRUE or FALSE for every element depending on whether or not that

element has previously appeared in the vector.

Differencing a vector

Our last example of a vector manipulation function is the function diff. This returns a vector which

contains the differences between the consecutive input elements.

82

Subsetting with two columns

We can also subset a matrix X with two columns. A row of X consists of two numbers, each row of X

selects a matrix element of X. The result is a vector with the selected elements from X.

Subsetting by a single number or a vector of numbers

What happens when we subset a matrix by a single number or one vector of numbers? In this case

the matrix is treated as a vector where all the columns are stacked.

Extracting data from data frames

To select a specific column from a data frame use the $ symbol or double square brackets and

quotes:

83

Adding columns to a data frame

84

The function cbind can be used to add additional columns to a data frame. For example, the ratio of

the GNP and the population

Merging data frames

Two data frames can be merged into one data frame using the function merge. 3 If the original data

frames contain identical columns, these columns only appear once in the merged data frame.

Consider the following two data frames:

85

IMPORTING DATA

READING FROM A TEXT FILE WITH read.table()

If we want to import just the data part as a data frame,we can use the function read.table() and skip

the header lines. The function has a whole bundle of arguments, e.g. to specify the header, the

column separator, the number of lines to skip, the data types of the columns, etc.

IMPORTING EXAMPLE DATA FILES

The function data() loads specified data sets, or lists the available data sets. Four formats of data files

are supported:

86

87

DATA MANIPULATION WITH DPLYR

Overview

dplyr is a grammar of data manipulation, providing a consistent set of verbs that help you solve the

most common data manipulation challenges:

● mutate() adds new variables that are functions of existing variables

● select() picks variables based on their names.

● filter() picks cases based on their values.

● summarise() reduces multiple values down to a single summary.

● arrange() changes the ordering of the rows.

These all combine naturally with group_by() which allows you to perform any operation “by group”.

You can learn more about them in vignette("dplyr"). As well as these single-table verbs, dplyr also

provides a variety of two-table verbs, which you can learn about in vignette("two-table").

dplyr is designed to abstract over how the data is stored. That means as well as working with local

data frames, you can also work with remote database tables, using exactly the same R code. Install

the dbplyr package then read vignette("databases", package = "dbplyr").

If you are new to dplyr, the best place to start is the data import chapter in R for data science.

Installation

The easiest way to get dplyr is to install the whole tidyverse:

install.packages("tidyverse")

Alternatively, install just dplyr:

install.packages("dplyr")

Development version

To get a bug fix, or use a feature from the development version, you can install dplyr from GitHub.

install.packages("devtools")

devtools::install_github("tidyverse/dplyr")

Cheatsheet

Usage

library(dplyr)

88

https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/arrange.html
https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/articles/dplyr.html
https://dplyr.tidyverse.org/articles/two-table.html
http://r4ds.had.co.nz/transform.html
https://www.rdocumentation.org/packages/utils/topics/install.packages
https://www.rdocumentation.org/packages/utils/topics/install.packages
https://www.rdocumentation.org/packages/base/topics/library

starwars %>%

filter(species == "Droid")

#> # A tibble: 5 x 13

#> name height mass hair_color skin_color eye_color birth_year gender

#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr>

#> 1 C-3PO 167 75 <NA> gold yellow 112 <NA>

#> 2 R2-D2 96 32 <NA> white, bl… red 33 <NA>

#> 3 R5-D4 97 32 <NA> white, red red NA <NA>

#> 4 IG-88 200 140 none metal red 15 none

#> 5 BB8 NA NA none none black NA none

#> # … with 5 more variables: homeworld <chr>, species <chr>, films <list>,

#> # vehicles <list>, starships <list>

starwars %>%

select(name, ends_with("color"))

#> # A tibble: 87 x 4

#> name hair_color skin_color eye_color

#> <chr> <chr> <chr> <chr>

#> 1 Luke Skywalker blond fair blue

#> 2 C-3PO <NA> gold yellow

#> 3 R2-D2 <NA> white, blue red

#> 4 Darth Vader none white yellow

#> 5 Leia Organa brown light brown

#> # … with 82 more rows

starwars %>%

mutate(name, bmi = mass / ((height / 100) ^ 2)) %>%

select(name:mass, bmi)

#> # A tibble: 87 x 4

#> name height mass bmi

#> <chr> <int> <dbl> <dbl>

#> 1 Luke Skywalker 172 77 26.0

#> 2 C-3PO 167 75 26.9

#> 3 R2-D2 96 32 34.7

#> 4 Darth Vader 202 136 33.3

#> 5 Leia Organa 150 49 21.8

#> # … with 82 more rows

starwars %>%

arrange(desc(mass))

#> # A tibble: 87 x 13

#> name height mass hair_color skin_color eye_color birth_year gender

#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr>

#> 1 Jabb… 175 1358 <NA> green-tan… orange 600 herma…
#> 2 Grie… 216 159 none brown, wh… green, y… NA male

89

https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/select.html
https://www.rdocumentation.org/packages/tidyselect/topics/select_helpers
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/arrange.html
https://dplyr.tidyverse.org/reference/desc.html

#> 3 IG-88 200 140 none metal red 15 none

#> 4 Dart… 202 136 none white yellow 41.9 male

#> 5 Tarf… 234 136 brown brown blue NA male

#> # … with 82 more rows, and 5 more variables: homeworld <chr>,

#> # species <chr>, films <list>, vehicles <list>, starships <list>

starwars %>%

group_by(species) %>%

summarise(

n = n(),

mass = mean(mass, na.rm = TRUE)

) %>%

filter(n > 1,

mass > 50)

#> # A tibble: 8 x 3

#> species n mass

#> <chr> <int> <dbl>

#> 1 Droid 5 69.8

#> 2 Gungan 3 74

#> 3 Human 35 82.8

#> 4 Kaminoan 2 88

#> 5 Mirialan 2 53.1

#> # … with 3 more rows

90

https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/n.html
https://www.rdocumentation.org/packages/base/topics/mean
https://dplyr.tidyverse.org/reference/filter.html

Indonesia International Institute for Life Science

[BI2107]

LINUX AND R COMPUTATION

Laboratory Procotol Developer and Supervisor(s) Information

Protocol Developer : Nanda R. Pradana Ratnasari

Email : nanda.ratnasari@i3l.ac.id

Supervisor(s) email(s)

David Agustriawan david.agustriawan@i3l.ac.id

Nanda R. Pradana Ratnasari nanda.ratnasari@i3l.ac.id

Notice

1. Operate ONLY the computer assigned to you.

kk. If you have any troubleshoot please contact your supervisor or Building

Management

ll. Do not rename files, adjust the dock size/icons, move items or files to the trash, or

change the system preferences unless directed to do so

mm. Do not exchange keyboards, mice, or other equipment among the computers

without notifying your supervisor

nn. Do not bring food or drinks into the lab unless it is in your backpack

2. Remain at your work center, respectful behavior promotes learning. Show integrity and

respect for class materials. Responsibility is fundamental. Misused equipment will be

replaced by those who damage it.

91

mailto:nanda.ratnasari@i3l.ac.id
mailto:david.agustriawan@i3l.ac.id
mailto:nanda.ratnasari@i3l.ac.id

Linux and R Programming

Session : 10
Date : November 12th, 2019

Laboratory :Bioinformatics laboratory

Overview

R is a language and environment for statistical computing and graphics. R provides a wide variety of

statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification,

clustering, …) and graphical techniques, and is highly extensible. The S language is often the vehicle

of choice for research in statistical methodology, and R provides an Open Source route to

participation in that activity. R is an integrated suite of software facilities for data manipulation,

calculation and graphical display. It includes

● an effective data handling and storage facility,

● a suite of operators for calculations on arrays, in particular matrices,

● a large, coherent, integrated collection of intermediate tools for data analysis,

● graphical facilities for data analysis and display either on-screen or on hardcopy, and

● a well-developed, simple and effective programming language which includes conditionals,

loops, user-defined recursive functions and input and output facilities.

Objective

Students are expected to understand on how applying R development tools.

- In week 9, students are expected to understand how to run an Application of data

manipulation as it is about fitting models to data.

Procedure

Plotting

The most elementary plot function is plot. In its simplest formit creates a scatterplot of two input
vectors. Let us consider an integer index ranging from 1 to 260 and an artificial log-return series of
the same length simulated from normal random variates. Note that the cumulative values form a
random walk process.

set.seed() : is a code used to make data generated having constant orders.

rnorm() : is used to generate data with normal distribution.

plot(x, y) : is used to create a plot for two variable data.

92

plot(x, y, main =””) : is to create a plot with a title use the argument main in the plot function.

A simple line plot
For a simple line plot which connects consecutive pointswe have to set the option type = "l" in the
plot() function. Let us return to the previous example and let us replot the data points in a different
way.

par(mfrow = c(,)) : is a code to create more than one figure in the screen

Drawing functions or expressions

93

In case of drawing functions or expressions, the function curve can be handy, it takes some work
away to produce a line graph. We show this displaying the density of the log-returns underlying a
histogram plot.

94

The foreign exchange rates can be downloaded from the FRED2 database of the US Federal Reserve
Bank in St. Louis

95

The daily log-return vector is computed from the differences of the logarithms of the rates

96

The functions pie() and barplot() can be used to draw pie and bar plots.

The following plot command creates a vertical view on the weights bars.

A horizontal view can be created by the following R command.

And the last example for the weights plot show how to create a pie plot.

97

Introduction

Visualizing multi-dimensional data is an art as well as a science. Due to the limitations of our
two-dimensional (2-D) rendering devices, building effective visualizations on more than two data
dimensions (attributes or features) becomes challenging as the number of dimensions start
increasing. We have extensively covered some strategies for effective multi-dimensional data
visualization in one of my previous articles, “The Art of Effective Visualization of Multi-dimensional
Data” with hands-on examples. In this article, we will cover the layered framework which we
leveraged to build these visualizations, called ‘The Grammar of Graphics’. We will also explore
essential concepts behind the layered Grammar of Graphics framework and discuss how we can use
each specific layered component to build effective visualization on multi-dimensional data. Examples
will be shown in Python, however, if you are interested you can replicate the same in R with ease.

Motivation

Data visualization and storytelling has always been one of the most important phases of any data
science pipeline involving extracting meaningful insights from data, regardless of the complexity of
the data or the project. Take a simple example of ‘The Datasaurus Dozen’ — twelve different datasets
depicted in the following figure.

Can you guess what is common among these very different looking sets of data?

98

https://towardsdatascience.com/the-art-of-effective-visualization-of-multi-dimensional-data-6c7202990c57
https://towardsdatascience.com/the-art-of-effective-visualization-of-multi-dimensional-data-6c7202990c57
https://www.autodeskresearch.com/publications/samestats

The Datasaurus Dozen — What is common among these diverse datasets?

Answer: Summary statistics for all the datasets are exactly the same!

This is a fun variant of the well known Anscombe’s quartet, which many of you might be very familiar
with, as depicted in the following figure.

Anscombe’s quartet — Different datasets with same summary statistics

99

The key takeaway from these demonstrations would be, “Do not trust your data blindly, and start
modeling on your data”. Summary statistics can always be deceptive. Always visualize and
understand your data attributes before moving on to feature engineering and building statistical,
machine learning and deep learning models.

Another very important source of motivation, particularly for effective data visualization, can be
derived from some excellent case-studies dating several centuries back when we didn’t even have
computers let alone Python or R! The first one is John Snow’s famous visualization depicting the
Broad Street Cholera Outbreak in London, England in 1854!

Visualizing the Broad Street Cholera outbreak which helped find the root cause of the disease
outbreak!

You can see how a simple hand-drawn visualization helped find the root cause of the cholera
outbreak in Broad Street way back in the 1850s. Another interesting visualization was built by
Florence Nightingale, the mother of modern nursing practice, who had a deep-seated interest in
nursing and statistics.

100

Causes of Mortality in the Army of the East — Florence Nightingale

The above figure depicts a polar area diagram depicting causes of mortality (death) in the army in
the 1850s. We can see the visualization is definitely not simplistic, yet it conveys the right insights —
clearly showing the proportion of soldiers who died due to diseases which were preventable, based
on wounds or other causes. This should serve as enough motivation for effective data visualization!

Understanding the Grammar of Graphics

To understand the Grammar of Graphics, we would need to understand what do we mean by
Grammar. The following figure summarizes both these aspects briefly.

101

Basically, a grammar of graphics is a framework which follows a layered approach to describe and
construct visualizations or graphics in a structured manner. A visualization involving
multi-dimensional data often has multiple components or aspects, and leveraging this layered
grammar of graphics helps us describe and understand each component involved in visualization —
in terms of data, aesthetics, scale, objects and so on.

The original grammar of graphics framework was proposed by Leland Wilkinson, which covers all
major aspects pertaining to effective data visualization in detail. I would definitely recommend
interested readers to check out the book on it, whenever they get a chance!

The Grammar of Graphics | Leland Wilkinson | Springer
Preface to First Edition Before writing the graphics for SYSTAT in the 1980's, I began by teaching a
seminar in…
www.springer.com

We will, however, be using a variant of this — known as the layered grammar of graphics framework,
which was proposed by Hadley Wickham, reputed Data Scientist and the creator of the famous R
visualization package ggplot2. Readers should check out his paper titled, ‘A layered grammar of
graphics’ which covers his proposed layered grammar of graphics in detail and also talks about his
open-source implementation framework ggplot2 which was built for the R programming language

A layered grammar of graphics
A grammar of graphics is a tool that enables us to concisely describe the components of a graphic.
Such a grammar…

102

https://www.springer.com/in/book/9780387245447?source=post_page-----1f92b4ed4149----------------------
https://www.springer.com/in/book/9780387245447?source=post_page-----1f92b4ed4149----------------------
https://www.springer.com/in/book/9780387245447?source=post_page-----1f92b4ed4149----------------------
https://www.springer.com/in/book/9780387245447?source=post_page-----1f92b4ed4149----------------------
https://www.springer.com/in/book/9780387245447?source=post_page-----1f92b4ed4149----------------------
https://www.springer.com/in/book/9780387245447?source=post_page-----1f92b4ed4149----------------------
https://ggplot2.tidyverse.org/
http://vita.had.co.nz/papers/layered-grammar.html
http://vita.had.co.nz/papers/layered-grammar.html
http://vita.had.co.nz/papers/layered-grammar.html?source=post_page-----1f92b4ed4149----------------------
http://vita.had.co.nz/papers/layered-grammar.html?source=post_page-----1f92b4ed4149----------------------
http://vita.had.co.nz/papers/layered-grammar.html?source=post_page-----1f92b4ed4149----------------------
http://vita.had.co.nz/papers/layered-grammar.html?source=post_page-----1f92b4ed4149----------------------

vita.had.co.nz

Hadley’s layered grammar of graphics uses several layered components to describe any graphic or
visualization. Most notably, it has some variations from the original grammar of graphics proposed by
Wilkinson as depicted in the following figure.

Mapping between components of Wilkinson’s grammar (left) and the layered grammar (right)

You can see there are various components in the grammar which can be used to build and describe a
visualization. I have identified seven such major components which usually help me build effective
visualizations on multi-dimensional data. The following figure illustrates it with some details about
each specific component in the grammar.

103

http://vita.had.co.nz/papers/layered-grammar.html?source=post_page-----1f92b4ed4149----------------------
http://vita.had.co.nz/papers/layered-grammar.html?source=post_page-----1f92b4ed4149----------------------

Major components of the Grammar of Graphics

We illustrate the same using a pyramid architecture to show an inherent layered hierarchy of
components. Typically, to build or describe any visualization with one or more dimensions, we can
use the components as follows.

1. Data: Always start with the data, identify the dimensions you want to visualize.

2. Aesthetics: Confirm the axes based on the data dimensions, positions of various data points in
the plot. Also check if any form of encoding is needed including size, shape, color and so on
which are useful for plotting multiple data dimensions.

3. Scale: Do we need to scale the potential values, use a specific scale to represent multiple values
or a range?

4. Geometric objects: These are popularly known as ‘geoms’. This would cover the way we would
depict the data points on the visualization. Should it be points, bars, lines and so on?

5. Statistics: Do we need to show some statistical measures in the visualization like measures of
central tendency, spread, confidence intervals?

6. Facets: Do we need to create subplots based on specific data dimensions?

7. Coordinate system: What kind of a coordinate system should the visualization be based on —
should it be cartesian or polar?

We will now be looking at how to leverage this layered framework to build effective data
visualizations for multi-dimensional data with some hands-on examples.

104

Grammar of Graphics in Action

We will now apply the concept we learnt in the previous section on some actual data. We will be
building all our visualizations in Python, but I would also recommend people to check out
the ggplot2 package in R, which is one of the most inspiring frameworks till now for building nice and
clean publication quality visualizations. We do have a ggplot framework in Python which has been
built by Yhat, Inc. However, if you check the repository, no commits or updates have been pushed for
the last two years, and unfortunately, this causes some errors especially due to backward
incompatibility issues with newer versions of pandas. Hence, to emulate the true layered grammar of
graphics syntax in Python, we will use another interesting framework called plotnine.

A Grammar of Graphics for Python - plotnine 0.4.0 documentation
plotnine is an implementation of a grammar of graphics in Python, it is based on ggplot2. The
grammar allows users to…
plotnine.readthedocs.io

Plotnine is an open-source Python implementation for a layered grammar of graphics framework
which is based on ggplot2. Thus, using the previously specified components in this layered grammar,
we can build effective visualizations.

Start with the data

We always start by loading up and looking at the dataset we want to analyze and visualize. We will
use the famous mtcars dataset available as one of the pre-loaded datasets in plotnine.

The mtcars dataset consists of data that was extracted from the 1974 Motor Trend US magazine, and
depicts fuel consumption and 10 other attributes of automobile design and performance for 32
automobiles (1973–74 models). The details of each attribute are depicted in the figure above. Let’s
build some visualizations now.

105

http://ggplot.yhathq.com/
https://twitter.com/YhatHQ
https://plotnine.readthedocs.io/en/stable/
https://plotnine.readthedocs.io/en/stable/?source=post_page-----1f92b4ed4149----------------------
https://plotnine.readthedocs.io/en/stable/?source=post_page-----1f92b4ed4149----------------------
https://plotnine.readthedocs.io/en/stable/?source=post_page-----1f92b4ed4149----------------------
https://plotnine.readthedocs.io/en/stable/?source=post_page-----1f92b4ed4149----------------------
https://plotnine.readthedocs.io/en/stable/?source=post_page-----1f92b4ed4149----------------------
https://plotnine.readthedocs.io/en/stable/?source=post_page-----1f92b4ed4149----------------------
https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/mtcars.html

Visualize two-dimensions (2-D)

We can now visualize data up to two dimensions using some of the components from our layered
grammar of graphics framework including data, scale, aesthetics and geoms. We choose a dot or
scatter plot in this case for our geometric object to represent each data point.

We can clearly see from the above visualization that mpg has a negative correlation with the cat wt.

Visualize three-dimensions (3-D)

To visualize three dimensions from our dataset, we can leverage color as one of our aesthetic
components to visualize one additional dimension besides our other two dimensions as depicted in
the following example.

106

In the above visualization, we depict the cars with different number of gears as separate categories
using the color aesthetic along with our other two data dimensions (variables). It is quite clear that
cars with a smaller number of gears on average tend to have higher wt and lower mpg.

Visualize four-dimensions (4-D)

To visualize four dimensions from our dataset, we can leverage color as well as size as two of our
aesthetics besides other regular components including geoms, data and scale.

107

The visualization shows us how powerful aesthetics can be in helping us visualize multiple data
dimensions in a single plot. It is quite clear that cars with higher number of cyl (cylinders) have lower
number of gears and in turn, their wt is higher and mpg lower.

Alternatively, we can also use color and facets to depict data in four dimensions instead of size as
depicted in the following example.

108

Facets are definitely one of the most powerful components towards building an effective data
visualization as shown in the visualization above, where we can clearly see cars with higher cyl count
have lower gear count and similar trends as the previous visualization with color and size.

Visualize data dimensions and statistics

To visualize data dimensions and some relevant statistics (like fitting a linear model), we can leverage
statistics along with the other components in our layered grammar.

109

This enables us to see linear model trends for mpg based on wt due to the statistics component.

Visualize five-dimensions (5-D)

To visualize data in five dimensions, you know the drill by now! We will leverage the power of
aesthetics including color, size and facets.

110

Here we use am as the facet where 0 indicates cars with automatic transmission and 1 indicates cars
with manual transmission. The plot shows that cars with manual transmission have higher number of
gears as compared to cars with automatic transmission. Also, majority of cars with a higher number
of cylinders (cyl) have automatic transmission. Other insights are similar to what we have observed in
the previous plots.

Visualize six-dimensions (6-D)

To visualize data in six dimensions, we can add in an additional facet on the y-axis along with a facet
on the x-axis, and color and size as aesthetics.

111

We represent transmission (am) as 0 (automatic) and 1 (manual) as a facet on the y-axis and number
of carburetors (carb) as a facet on the x-axis besides the other dimensions represented using other
aesthetics similar to our previous plots. An interesting insight from the above visualization is that cars
with higher number of gears have manual transmission (am) and higher number of carburetors
(carb). Do you notice any other interesting insights?

Can we go higher?

The pressing question is, can we go higher than six dimensions? Well, it definitely becomes more and
more difficult to hack our way around the limitations of a two-dimensional rendering device to
visualize more data dimensions.

One method is to use more facets and subplots. Besides this, you can also use the notion of time if
your dataset has a temporal aspect as depicted in the following example.

112

Hans Rosling’s famous visualization of global population, health and economic indicators

This depicts Hans Rosling’s famous visualization of depicting global population, health and various
economic indicators across all countries. This was also presented in an official TED conference which
I would recommend everyone to check out if they haven’t done it already!

113

https://www.ted.com/speakers/hans_rosling?language=en
https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen

Indonesia International Institute for Life Science

[BI2107]

LINUX AND R COMPUTATION

Laboratory Procotol Developer and Supervisor(s) Information

Protocol Developer : Nanda R. Pradana Ratnasari

Email : nanda.ratnasari@i3l.ac.id

Supervisor(s) email(s)

David Agustriawan david.agustriawan@i3l.ac.id

Nanda R. Pradana Ratnasari nanda.ratnasari@i3l.ac.id

Notice

1. Operate ONLY the computer assigned to you.

oo. If you have any troubleshoot please contact your supervisor or Building

Management

pp. Do not rename files, adjust the dock size/icons, move items or files to the trash, or

change the system preferences unless directed to do so

qq. Do not exchange keyboards, mice, or other equipment among the computers

without notifying your supervisor

rr. Do not bring food or drinks into the lab unless it is in your backpack

2. Remain at your work center, respectful behavior promotes learning. Show integrity and

respect for class materials. Responsibility is fundamental. Misused equipment will be

replaced by those who damage it.

114

mailto:nanda.ratnasari@i3l.ac.id
mailto:david.agustriawan@i3l.ac.id
mailto:nanda.ratnasari@i3l.ac.id

Linux and R Programming

Session : 11
Date : November 12th, 2019

Laboratory :Bioinformatics laboratory

Overview

R is a language and environment for statistical computing and graphics. R provides a wide variety of

statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification,

clustering, …) and graphical techniques, and is highly extensible. The S language is often the vehicle

of choice for research in statistical methodology, and R provides an Open Source route to

participation in that activity. R is an integrated suite of software facilities for data manipulation,

calculation and graphical display. It includes

● an effective data handling and storage facility,

● a suite of operators for calculations on arrays, in particular matrices,

● a large, coherent, integrated collection of intermediate tools for data analysis,

● graphical facilities for data analysis and display either on-screen or on hardcopy, and

● a well-developed, simple and effective programming language which includes conditionals,

loops, user-defined recursive functions and input and output facilities.

Objective

Students are expected to understand on how applying R development tools.

- In week 9, students are expected to understand how to run an Application of data

manipulation as it is about fitting models to data.

Procedure

Regression Analysis

Code for doing Regression Analysis

rm(list=ls()) # Clear R's memory

data(cars) #call the data
head(cars) # display the first 6 observations
plot(cars)
scatter.smooth(x=cars$speed, y=cars$dist, main="Dist ~ Speed") #
scatterplot

par(mfrow=c(1, 2)) # divide graph area in 2 columns

boxplot(cars$speed, main="Speed", sub=paste("Outlier rows: ",
boxplot.stats(cars$speed)$out)) # box plot for 'speed'

boxplot(cars$dist, main="Distance", sub=paste("Outlier rows: ",
boxplot.stats(cars$dist)$out)) # box plot for 'distance'

115

#library(e1071)
par(mfrow=c(1, 2)) # divide graph area in 2 columns
plot(density(cars$speed), main="Density Plot: Speed",
ylab="Frequency", sub=paste("Skewness:",
round(e1071::skewness(cars$speed), 2))) # density plot for 'speed'
polygon(density(cars$speed), col="red")
plot(density(cars$dist), main="Density Plot: Distance",
ylab="Frequency", sub=paste("Skewness:",
round(e1071::skewness(cars$dist), 2))) # density plot for 'dist'
polygon(density(cars$dist), col="red")

cor(cars$speed, cars$dist) # calculate correlation between speed
and distance
linearMod <- lm(dist ~ speed, data=cars) # build linear regression
model on full data
print(linearMod)
summary(linearMod)
anova(linearMod)

plot(linearMod, which=1)
plot(linearMod, which=2)
plot(linearMod, which=3)
plot(linearMod, which=4)

rm(list=ls()) : is a code to remove all data that is called or inputed in the Rstudio
data() : is to call data provided in R
plot() : is to create scatter plot of the data

scatter.smooth(x, y, main=""): is to create a smoothing line for data plotted
- x : filled by variable put in x axis
- y : filled by variable put in y axis
- main : is a code to give a title for the plot

boxplot() : to create a boxplot
cor(a,b) : to calculate correlation between two variables a and b
lm(y ~ x, data) : a function to create a regression model for variable independent (x)

and variable dependent (y)
summary(model) : is a code to write the summary and the test of regression model
anova(linearMod) : is a code to do F test anaylsis
print(linearMod : is a code to print the coefficient of the regression

plot(linearMod, which=1) : a code to create a error scatterplot for checking the regression
form

par(mfrow=c(mrows,ncols)): a code to create a matrix of mrows and ncols plots that are
filled in by row.

116

117

Output

> plot(cars)
> scatter.smooth(x=cars$speed, y=cars$dist, main="Dist ~ Speed") #
scatterplot
> par(mfrow=c(1, 2)) # divide graph area in 2 columns
> boxplot(cars$speed, main="Speed", sub=paste("Outlier rows: ",
boxplot.stats(cars$speed)$out)) # box plot for 'speed'
> boxplot(cars$dist, main="Distance", sub=paste("Outlier rows: ",
boxplot.stats(cars$dist)$out)) # box plot for 'distance'

> plot(density(cars$speed), main="Density Plot: Speed", ylab="Frequency",
sub=paste("Skewness:", round(e1071::skewness(cars$speed), 2))) # density
plot for 'speed'
> polygon(density(cars$speed), col="red")
> plot(density(cars$dist), main="Density Plot: Distance", ylab="Frequency",
sub=paste("Skewness:", round(e1071::skewness(cars$dist), 2))) # density
plot for 'dist'
> polygon(density(cars$dist), col="red")

> cor(cars$speed, cars$dist) # calculate correlation between speed and
distance
[1] 0.8068949
> linearMod <- lm(dist ~ speed, data=cars) # build linear regression model
on full data
> linearMod

118

Call:
lm(formula = dist ~ speed, data = cars)

Coefficients:
(Intercept) speed

-17.579 3.932

> summary(linearMod)

Call:
lm(formula = dist ~ speed, data = cars)

Residuals:
Min 1Q Median 3Q Max

-29.069 -9.525 -2.272 9.215 43.201

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

> anova(linearMod)
Analysis of Variance Table

Response: dist
Df Sum Sq Mean Sq F value Pr(>F)

speed 1 21186 21185.5 89.567 1.49e-12 ***
Residuals 48 11354 236.5

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

119

Indonesia International Institute for Life Science

[BI2107]

LINUX AND R COMPUTATION

Laboratory Procotol Developer and Supervisor(s) Information

Protocol Developer : Nanda R. Pradana Ratnasari

Email : nanda.ratnasari@i3l.ac.id

Supervisor(s) email(s)

David Agustriawan david.agustriawan@i3l.ac.id

Nanda R. Pradana Ratnasari nanda.ratnasari@i3l.ac.id

Notice

1. Operate ONLY the computer assigned to you.

ss. If you have any troubleshoot please contact your supervisor or Building Management

tt. Do not rename files, adjust the dock size/icons, move items or files to the trash, or change

the system preferences unless directed to do so

uu. Do not exchange keyboards, mice, or other equipment among the computers without

notifying your supervisor

vv. Do not bring food or drinks into the lab unless it is in your backpack

2. Remain at your work center, respectful behavior promotes learning. Show integrity and respect for

class materials. Responsibility is fundamental. Misused equipment will be replaced by those who

damage it.

120

mailto:nanda.ratnasari@i3l.ac.id
mailto:david.agustriawan@i3l.ac.id
mailto:nanda.ratnasari@i3l.ac.id

Linux and R Programming

Session : 12

Date : December 3rd, 2019

Laboratory :Bioinformatics laboratory

Overview

R is a language and environment for statistical computing and graphics. R provides a wide variety of statistical

(linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, …) and

graphical techniques, and is highly extensible. The S language is often the vehicle of choice for research in

statistical methodology, and R provides an Open Source route to participation in that activity. R is an integrated

suite of software facilities for data manipulation, calculation and graphical display. It includes

● an effective data handling and storage facility,

● a suite of operators for calculations on arrays, in particular matrices,

● a large, coherent, integrated collection of intermediate tools for data analysis,

● graphical facilities for data analysis and display either on-screen or on hardcopy, and

● a well-developed, simple and effective programming language which includes conditionals, loops,

user-defined recursive functions and input and output facilities.

Objective

Students are expected to understand on how applying R development tools.

- In week 9, students are expected to understand how to run an Application of data manipulation as it is

about fitting models to data.

Procedure

R has five basic or “atomic” classes of objects:

● character

● numeric (real numbers)

● integer

● complex

● logical (True/False)

Creating Vectors

The c() function can be used to create vectors of objects by concatenating things together.
x <- c(0.5, 0.6) ## numeric
x <- c(TRUE, FALSE) ## logical
x <- c(T, F) ## logical
x <- c("a", "b", "c") ## character
x <- 9:29 ## integer
x <- c(1+0i, 2+4i) ## complex

You can also use the vector() function to initialize vectors.
x <- vector("numeric", length = 10)

121

Mixing Objects

There are occasions when different classes of R objects get mixed together. Sometimes this
happens by accident but it can also happen on purpose. So what happens with the following code?

y <- c(1.7, "a") ## character
y <- c(TRUE, 2) ## numeric
y <- c("a", TRUE) ## character

Explicit Coercion

Objects can be explicitly coerced from one class to another using the as.* functions, if available.
x <- 0:6
class(x)
[1] "integer"
as.numeric(x)
[1] 0 1 2 3 4 5 6
as.logical(x)
[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE
as.character(x)
[1] "0" "1" "2" "3" "4" "5" "6"
Sometimes, R can’t figure out how to coerce an object and this can result in NAs being produced.
x <- c("a", "b", "c")
as.numeric(x)
Warning: NAs introduced by coercion
[1] NA NA NA
as.logical(x)
[1] NA NA NA
as.complex(x)
Warning: NAs introduced by coercion

Matrices

Matrices are vectors with a dimension attribute. The dimension attribute is itself an integer vector of
length 2 (number of rows, number of columns)

m <- matrix(nrow = 2, ncol = 3)
m

[,1] [,2] [,3]
[1,] NA NA NA
[2,] NA NA NA
dim(m)
[1] 2 3
attributes(m)
$dim
[1] 2 3
Matrices are constructed column-wise, so entries can be thought of starting in the “upper left” corner
and running down the columns.

m <- matrix(1:6, nrow = 2, ncol = 3)
m

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

122

Matrices can also be created directly from vectors by adding a dimension attribute.

m <- 1:10
m
[1] 1 2 3 4 5 6 7 8 9 10
dim(m) <- c(2, 5)
m

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
Matrices can be created by column-binding or row-binding with the cbind() and rbind() functions.
x <- 1:3
y <- 10:12
cbind(x, y)

x y
[1,] 1 10
[2,] 2 11
[3,] 3 12
rbind(x, y)
[,1] [,2] [,3]

x 1 2 3
y 10 11 12

 Lists

Lists are a special type of vector that can contain elements of different classes. Lists are a very
important data type in R and you should get to know them well. Lists, in combination with the
various “apply” functions discussed later, make for a powerful combination.

Lists can be explicitly created using the list() function, which takes an arbitrary number of
arguments.
x <- list(1, "a", TRUE, 1 + 4i)
x
[[1]]
[1] 1

[[2]]
[1] "a"

[[3]]
[1] TRUE

[[4]]
[1] 1+4i
We can also create an empty list of a prespecified length with the vector() function
x <- vector("list", length = 5)
x
[[1]]
NULL

[[2]]
NULL

[[3]]
NULL

123

Factors

Factors are used to represent categorical data and can be unordered or ordered. One can think of a
factor as an integer vector where each integer has a label. Factors are important in statistical
modeling and are treated specially by modelling functions like lm() and glm().
Using factors with labels is better than using integers because factors are self-describing. Having a
variable that has values “Male” and “Female” is better than a variable that has values 1 and 2.

Factor objects can be created with the factor() function.
x <- factor(c("yes", "yes", "no", "yes", "no"))
x
[1] yes yes no yes no
Levels: no yes
table(x)
x
no yes
2 3

See the underlying representation of factor
unclass(x)
[1] 2 2 1 2 1
attr(,"levels")
[1] "no" "yes"
Often factors will be automatically created for you when you read a dataset in using a function
like read.table(). Those functions often, as a default, create factors when they encounter data that
look like characters or strings.
The order of the levels of a factor can be set using the levels argument to factor(). This can be
important in linear modelling because the first level is used as the baseline level. This feature can
also be used to customize order in plots that include factors, since by default factors are plotted in
the order of their levels.
x <- factor(c("yes", "yes", "no", "yes", "no"))
x ## Levels are put in alphabetical order
[1] yes yes no yes no
Levels: no yes
x <- factor(c("yes", "yes", "no", "yes", "no"),

levels = c("yes", "no"))
x
[1] yes yes no yes no
Levels: yes no

Missing Values

Missing values are denoted by NA or NaN for undefined mathematical operations.
● is.na() is used to test objects if they are NA
● is.nan() is used to test for NaN
● NA values have a class also, so there are integer NA, character NA, etc.
● A NaN value is also NA but the converse is not true

Create a vector with NAs in it
x <- c(1, 2, NA, 10, 3)
Return a logical vector indicating which elements are NA
is.na(x)
[1] FALSE FALSE TRUE FALSE FALSE
Return a logical vector indicating which elements are NaN
is.nan(x)
[1] FALSE FALSE FALSE FALSE FALSE
Now create a vector with both NA and NaN values
x <- c(1, 2, NaN, NA, 4)

124

is.na(x)
[1] FALSE FALSE TRUE TRUE FALSE
is.nan(x)
[1] FALSE FALSE TRUE FALSE FALSE

Data Frames

Data frames are used to store tabular data in R. They are an important type of object in R and are
used in a variety of statistical modeling applications. Hadley Wickham’s package dplyr has an
optimized set of functions designed to work efficiently with data frames, and ggplot2 plotting
functions work best with data stored in data frames.
Data frames are represented as a special type of list where every element of the list has to have the
same length. Each element of the list can be thought of as a column and the length of each element
of the list is the number of rows.

Unlike matrices, data frames can store different classes of objects in each column. Matrices must
have every element be the same class (e.g. all integers or all numeric).

In addition to column names, indicating the names of the variables or predictors, data frames have a
special attribute called row.names which indicate information about each row of the data frame.
Data frames are usually created by reading in a dataset using the read.table() or read.csv().
However, data frames can also be created explicitly with the data.frame() function or they can be
coerced from other types of objects like lists.
Data frames can be converted to a matrix by calling data.matrix(). While it might seem that
the as.matrix() function should be used to coerce a data frame to a matrix, almost always, what
you want is the result of data.matrix().
x <- data.frame(foo = 1:4, bar = c(T, T, F, F))
x
foo bar

1 1 TRUE
2 2 TRUE
3 3 FALSE
4 4 FALSE
nrow(x)
[1] 4
ncol(x)
[1] 2

Names

R objects can have names, which is very useful for writing readable code and self-describing
objects. Here is an example of assigning names to an integer vector.

x <- 1:3
names(x)
NULL
names(x) <- c("New York", "Seattle", "Los Angeles")
x

New York Seattle Los Angeles
1 2 3

names(x)
[1] "New York" "Seattle" "Los Angeles"
Lists can also have names, which is often very useful.

x <- list("Los Angeles" = 1, Boston = 2, London = 3)

125

https://github.com/hadley/dplyr

x
$`Los Angeles`
[1] 1

$Boston
[1] 2

$London
[1] 3
names(x)
[1] "Los Angeles" "Boston" "London"
Matrices can have both column and row names.

m <- matrix(1:4, nrow = 2, ncol = 2)
dimnames(m) <- list(c("a", "b"), c("c", "d"))
m
c d

a 1 3
b 2 4
Column names and row names can be set separately using
the colnames() and rownames() functions.
colnames(m) <- c("h", "f")
rownames(m) <- c("x", "z")
m
h f

x 1 3
z 2 4
Note that for data frames, there is a separate function for setting the row names,
the row.names() function. Also, data frames do not have column names, they just have names (like
lists). So to set the column names of a data frame just use the names() function. Yes, I know its
confusing. Here’s a quick summary:

Object Set column names
Set row
names

data frame names() row.names()

matrix colnames() rownames()

Reading Tabular Data with the readr Package
The learning objectives for this section are to:

● Read tabular data into R and read in web data via web scraping tools and APIs

The readr package is the primary means by which we will read tablular data, most notably,
comma-separated-value (CSV) files. The readr package has a few functions in it for reading and
writing tabular data—we will focus on the read_csv function. The readr package is available on
CRAN and the code for the package is maintained on GitHub.
The importance of the read_csv function is perhaps better understood from an historical
perspective. R’s built in read.csv function similarly reads CSV files, but the read_csv function
in readr builds on that by removing some of the quirks and “gotchas” of read.csv as well as
dramatically optimizing the speed with which it can read data into R. The read_csv function also
adds some nice user-oriented features like a progress meter and a compact method for specifying
column types.

126

https://cran.r-project.org/package=readr
https://cran.r-project.org/package=readr
https://github.com/hadley/readr

The only required argument to read_csv is a character string specifying the path to the file to read. A
typical call to read_csv will look as follows.

library(readr)
teams <- read_csv("directory/file_name.csv")

The readr package includes a variety of functions in the read_* family that allow you to read in data
from different formats of flat files. The following table gives a guide to several functions in
the read_* family.

readr function Use

read_csv Reads comma-separated file

read_csv2 Reads semicolon-separated file

read_tsv Reads tab-separated file

read_delim General function for reading delimited files

read_fwf Reads fixed width files

read_log Reads log files

Control Structures

Note: Some of the material in this section is adapted from R Programming for Data Science.

The learning objectives of the section are:

● Describe the control flow of an R program

Control structures in R allow you to control the flow of execution of a series of R expressions.
Basically, control structures allow you to put some “logic” into your R code, rather than just always
executing the same R code every time. Control structures allow you to respond to inputs or to
features of the data and execute different R expressions accordingly.

Commonly used control structures are

● if and else: testing a condition and acting on it
● for: execute a loop a fixed number of times
● break: break the execution of a loop
● next: skip an iteration of a loop

Most control structures are not used in interactive sessions, but rather when writing functions or
longer expressions. However, these constructs do not have to be used in functions and it’s a good
idea to become familiar with them before we delve into functions.

if-else
The if-else combination is probably the most commonly used control structure in R (or perhaps
any language). This structure allows you to test a condition and act on it depending on whether it’s
true or false.
For starters, you can just use the if statement.
if(<condition>) {

do something
}
Continue with rest of code

127

https://leanpub.com/rprogramming

The above code does nothing if the condition is false. If you have an action you want to execute
when the condition is false, then you need an else clause.
if(<condition>) {

do something
} else {

do something else
}
You can have a series of tests by following the initial if with any number of else ifs.
if(<condition1>) {

do something
} else if(<condition2>) {

do something different
} else {

do something different
}
Here is an example of a valid if/else structure.

Generate a uniform random number
x <- runif(1, 0, 10)
if(x > 3) {

y <- 10
} else {

y <- 0
}
The value of y is set depending on whether x > 3 or not.
Of course, the else clause is not necessary. You could have a series of if clauses that always get
executed if their respective conditions are true.
if(<condition1>) {

}

if(<condition2>) {

}

for Loops
For loops are pretty much the only looping construct that you will need in R. While you may
occasionally find a need for other types of loops, in most data analysis situations, there are very few
cases where a for loop isn’t sufficient.

In R, for loops take an iterator variable and assign it successive values from a sequence or vector.
For loops are most commonly used for iterating over the elements of an object (list, vector, etc.)

numbers <- rnorm(10)
for(i in 1:10) {

print(numbers[i])
}
[1] -0.9567815
[1] 1.347491
[1] -0.03158058
[1] 0.5960358
[1] 1.133312
[1] -0.7085361
[1] 1.525453
[1] 1.114152
[1] -0.1214943
[1] -0.2898258

128

This loop takes the i variable and in each iteration of the loop gives it values 1, 2, 3, …, 10, executes
the code within the curly braces, and then the loop exits.
The following three loops all have the same behavior.

x <- c("a", "b", "c", "d")

for(i in 1:4) {
Print out each element of 'x'
print(x[i])

}
[1] "a"
[1] "b"
[1] "c"
[1] "d"
The seq_along() function is commonly used in conjunction with for loops in order to generate an
integer sequence based on the length of an object (in this case, the object x).
Generate a sequence based on length of 'x'
for(i in seq_along(x)) {

print(x[i])
}
[1] "a"
[1] "b"
[1] "c"
[1] "d"
It is not necessary to use an index-type variable.

for(letter in x) {
print(letter)

}
[1] "a"
[1] "b"
[1] "c"
[1] "d"
For one line loops, the curly braces are not strictly necessary.

for(i in 1:4) print(x[i])
[1] "a"
[1] "b"
[1] "c"
[1] "d"
However, curly braces are sometimes useful even for one-line loops, because that way if you decide
to expand the loop to multiple lines, you won’t be burned because you forgot to add curly braces
(and you will be burned by this).

Nested for loops
for loops can be nested inside of each other.
x <- matrix(1:6, 2, 3)

for(i in seq_len(nrow(x))) {
for(j in seq_len(ncol(x))) {

print(x[i, j])
}

}
Nested loops are commonly needed for multidimensional or hierarchical data structures
(e.g. matrices, lists). Be careful with nesting though. Nesting beyond 2 to 3 levels often makes it
difficult to read or understand the code. If you find yourself in need of a large number of nested
loops, you may want to break up the loops by using functions (discussed later).

129

next, break
next is used to skip an iteration of a loop.
for(i in 1:100) {

if(i <= 20) {
Skip the first 20 iterations
next

}
Do something here

}
break is used to exit a loop immediately, regardless of what iteration the loop may be on.
for(i in 1:100) {

print(i)

if(i > 20) {
Stop loop after 20 iterations
break

}
}

Basic Plotting With ggplot2

The ggplot2 package allows you to quickly plot attractive graphics and to visualize and explore
data. Objects created with ggplot2 can also be extensively customized with ggplot2 functions
(more on that in the next subsection), and because ggplot2 is built using grid graphics, anything that
cannot be customized using ggplot2 functions can often be customized using grid graphics. While
the structure of ggplot2 code differs substantially from that of base R graphics, it offers a lot of
power for the required effort. This first subsection focuses on useful, rather
than attractive graphs, since this subsection focuses on exploring rather than presenting data.
Later sections will give more information about making more attractive or customized plots, as you’d
want to do for final reports, papers, etc.
To show how to use basic ggplot2, we’ll use a dataset of Titanic passengers, their characteristics,
and whether or not they survived the sinking. This dataset has become fairly famous in data science,
because it’s used, among other things, for one of Kaggle’s long-term “learning” competitions, as well
as in many tutorials and texts on building classification models.
Kaggle is a company that runs predictive modeling competitions, with top competitors sometimes
winning cash prizes or interviews at top companies. At any time, Kaggle is typically is hosting several
competitions, including some with no cash reward that are offered to help users get started with
predictive modeling.

Doing Kaggle competitions is a great way to practice working with data and building models. Kaggle
also has forums, repositories of code script for different competitions, and a blog that includes tips
from past winners.

To get this dataset, you’ll need to install and load the titanic package, and then you can load and
rename the training datasets, which includes data on about two-thirds of the Titanic passengers:
install.packages("titanic") # If you don't have the package installed
library(titanic)
data("titanic_train", package = "titanic")
titanic <- titanic_train
The other data example we’ll use in this subsection is some data on players in the 2010 World Cup.
This is available from the faraway package:
install.packages("faraway") # If you don't have the package installed
library(faraway)
data("worldcup")

130

https://www.kaggle.com/

Unlike most data objects you’ll work with, the data that comes with an R package will often have its
own help file. You can access this using the ? operator. For example, try running: ?worldcup.
All of the plots we’ll make in this subsection will use the ggplot2 package (another member of the
tidyverse!). If you don’t already have that installed, you’ll need to install it. You then need to load the
package in your current session of R:
install.packages("ggplot2") ## Uncomment and run if you don't have `ggplot2`
installed
library(ggplot2)
The process of creating a plot using ggplot2 follows conventions that are a bit different than most of
the code you’ve seen so far in R (although it is somewhat similar to the idea of piping we introduced
in an earlier course). The basic steps behind creating a plot with ggplot2 are:

1. Create an object of the ggplot class, typically specifying the data and some or all of
the aesthetics;

2. Add on geoms and other elements to create and customize the plot, using +.

You can add on one or many geoms and other elements to create plots that range from very simple
to very customized. We’ll focus on simple geoms and added elements first, and then explore more
detailed customization later.

Initializing a ggplot object
The first step in creating a plot using ggplot2 is to create a ggplot object. This object will not, by
itself, create a plot with anything in it. Instead, it typically specifies the data frame you want to use
and which aesthetics will be mapped to certain columns of that data frame (aesthetics are explained
more in the next subsection).
Use the following conventions to initialize a ggplot object:

Generic code
object <- ggplot(dataframe, aes(x = column_1, y = column_2))
or, if you don't need to save the object
ggplot(dataframe, aes(x = column_1, y = column_2))
The dataframe is the first parameter in a ggplot call and, if you like, you can use the parameter
definition with that call (e.g., data = dataframe). Aesthetics are defined within an aes function call
that typically is used within the ggplot call.
In ggplot2, life is much easier if everything you want to plot is included in a dataframe as a column,
and the first argument to ggplot must be a dataframe. This format has been a bit hard for some
base R graphics users to adjust to, since base R graphics tends to plot based on vector, rather than
dataframe, inputs. Trying to pass in a vector rather than a dataframe can be a common reason
for ggplot2 errors for all R users.

Plot aesthetics

Aesthetics are properties of the plot that can show certain elements of the data. For example, in
Figure 4.1, color shows (i.e., is mapped to) gender, x-position shows height, and y-position shows
weight in a sample data set of measurements of children in Nepal.

131

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:aesmapex

Figure 4.1: Example of how different properties of a plot can show different elements to the data.
Here, color indicates gender, position along the x-axis shows height, and position along the y-axis
shows weight. This example is a subset of data from the nepali dataset in the faraway package.
Any of these aesthetics could also be given a constant value, instead of being mapped to an element
of the data. For example, all the points could be red, instead of showing gender. Later in this section,
we will describe how to use these constant values for aesthetics. We’ll discuss how to code this later
in this section.

Which aesthetics are required for a plot depend on which geoms (more on those in a second) you’re
adding to the plot. You can find out the aesthetics you can use for a geom in the “Aesthetics” section
of the geom’s help file (e.g., ?geom_point). Required aesthetics are in bold in this section of the help
file and optional ones are not. Common plot aesthetics you might want to specify include:

Code Description

x Position on x-axis

y Position on y-axis

shape Shape

color Color of border of elements

fill Color of inside of elements

size Size

alpha Transparency (1: opaque; 0: transparent)

132

linetype Type of line (e.g., solid, dashed)

Creating a basic ggplot plot

To create a plot, you need to add one of more geoms to the ggplot object. The system of creating
a ggplot object, mapping aesthetics to columns of the data, and adding geoms makes more sense
once you try a few plots. For example, say you’d like to create a histogram showing the fares paid by
passengers in the example Titanic data set. To plot the histogram, you’ll first need to create
a ggplot object, using a dataframe with the “Fares” column you want to show in the plot. In creating
this ggplot object, you only need one aesthetic (x, which in this case you want to map to “Fares”),
and then you’ll need to add a histogram geom. In code, this is:
ggplot(data = titanic, aes(x = Fare)) +
geom_histogram()

This code sets the dataframe as the titanic object in the user’s working session, maps the values
in the Fare column to the x aesthetic, and adds a histogram geom to generate a histogram.
If R gets to the end of a line and there is not some indication that the call is not over (e.g., %>% for
piping or + for ggplot2 plots), R interprets that as a message to run the call without reading in further
code. A common error when writing ggplot2 code is to put the + to add a geom or element at the
beginning of a line rather than the end of a previous line— in this case, R will try to execute the call
too soon. To avoid errors, be sure to end lines with +, don’t start lines with it.
There is some flexibility in writing the code to create this plot. For example, you could specify the
aesthetic for the histogram in an aes statement when adding the geom (geom_histogram) rather
than in the ggplot call:
ggplot(data = titanic) +
geom_histogram(aes(x = Fare))

Similarly, you could specify the dataframe when adding the geom rather than in the ggplot call:
ggplot() +
geom_histogram(data = titanic, aes(x = Fare))

133

Finally, you can pipe the titanic dataframe into a ggplot call, since the ggplot function takes a
dataframe as its first argument:
titanic %>%
ggplot() +
geom_histogram(aes(x = Fare))

or
titanic %>%
ggplot(aes(x = Fare)) +
geom_histogram()

While all of these work, for simplicity we will use the syntax of specifying the data and aesthetics in
the ggplot call for most examples in this subsection. Later, we’ll show how this flexibility can be
used to use data from differents dataframe for different geoms or change aesthetic mappings
between geoms.
A key thing to remember, however, is that ggplot is not flexible about whether you specify
aesthetics within an aes call or not. We will discuss what happens if you do not later in the book, but
it is very important that if you want to show values from a column of the data using aesthetics like
color, size, shape, or position, you remember to make that specification within aes. Also, be sure that
you specify the dataframe before or when you specify aesthetics (i.e., you can’t specify aesthetics in
the ggplot statement if you haven’t specified the dataframe yet), and if you specify a dataframe
within a geom, be sure to use data = syntax rather than relying on parameter position, as data is not
the first parameter expected for geom functions.
When you run the code to create a plot in RStudio, the plot will be shown in the “Plots” tab in one of
the RStudio panels. If you would like to save the plot, you can do so using the “Export” button in this
tab. However, if you would like to use code in an R script to save a plot, you can do so (and it’s more
reproducible!).

To save a plot using code in a script, take the following steps: (1) open a graphics device (e.g., using
the function pdf or png); (2) run the code to draw the map; and (3) close the graphics device using
the dev.off function. Note that the function you use to open a graphics device will depend on the
type of device you want to open, but you close all devices with the same function (dev.off).

Geoms

Geom functions add the graphical elements of the plot; if you do not include at least one geom,
you’ll get a blank plot space. Each geom function has its own arguments to adjust how the graph is
created. For example, when adding a historgram geom, you can use the bins argument to change
the number of bins used to create the histogram— try:
ggplot(titanic, aes(x = Fare)) +
geom_histogram(bins = 15)

As with any R functions, you can find out more about the arguments available for a geom function by
reading the function’s help file (e.g., ?geom_histogram).
Geom functions differ in the aesthetic inputs they require. For example,
the geom_histogram funciton only requires a single aesthetic (x). If you want to create a scatterplot,
you’ll need two aesthetics, x and y. In the worldcup dataset, the Time column gives the amount of
time each player played in the World Cup 2010 and the Passes column gives the number of passes
he made. To see the relationship between these two variables, you can create a ggplot object with
the dataframe, mapping the x aesthetic to Time and the y aesthetic to Passes, and then adding a
point geom:
ggplot(worldcup, aes(x = Time, y = Passes)) +
geom_point()

134

All geom functions have both required and accepted aesthetics. For example,
the geom_point function requires x and y, but the function will also
accept alpha (transparency), color, fill, group, size, shape, and stroke aesthetics. If you try to
create a geom without one its required aesthetics, you will get an error:
ggplot(worldcup, aes(x = Time)) +
geom_point()

Error: geom_point requires the following missing aesthetics: y
You can, however, add accepted aesthetics to the geom if you’d like; for example, to use color to
show player position and size to show shots on goal for the World Cup data, you could call:

ggplot(worldcup, aes(x = Time, y = Passes,
color = Position, size = Shots)) +

geom_point()

135

The following table gives some of the geom functions you may find useful in ggplot2, along with the
required aesthetics and some of the most useful some useful specific arguments for each geom
function (there are other useful arguments that can be applied to many different geom functions,
which will be covered later). The elements created by these geom functions are usually clear from the
function names (e.g., geom_point plots points; geom_segment plots segments).

Table 4.1: MVPs of geom functions

Function Common aesthetics Common arguments

geom_point() x, y

geom_line() x, y arrow, na.rm

geom_segment() x, y, xend, yend arrow, na.rm

geom_path() x, y na.rm

geom_polygon() x, y

geom_histogram() x bins, binwidth

geom_abline() intercept, slope

136

geom_hline() yintercept

geom_vline() xintercept

geom_smooth() x, y method, se, span

geom_text() x, y, label parse, nudge_x, nudge_y

Using multiple geoms

Several geoms can be added to the same ggplot object, which allows you to build up layers to
create interesting graphs. For example, we previously made a scatterplot of time versus shots for
World Cup 2010 data. You could make that plot more interesting by adding label points for
noteworthy players with those players’ team names and positions. First, you can create a subset of
data with the information for noteworthy players and add a column with the text to include on the
plot. Then you can add a text geom to the previous ggplot object:
library(dplyr)
noteworthy_players <- worldcup %>% filter(Shots == max(Shots) |

Passes == max(Passes)) %>%
mutate(point_label = paste(Team, Position, sep = ", "))

ggplot(worldcup, aes(x = Passes, y = Shots)) +
geom_point() +
geom_text(data = noteworthy_players, aes(label = point_label),

vjust = "inward", hjust = "inward")

137

In this example, we’re using data from different dataframes for different geoms. We’ll discuss how
that works more later in this section.

As another example, there seemed to be some horizontal clustering in the scatterplot we made of
player time versus passes made for the worldcup data. Soccer games last 90 minutes each, and
different teams play a different number of games at the World Cup, based on how well they do. To
check if horizontal clustering is at 90-minute intervals, you can plot a histogram of player time (Time),
with reference lines every 90 minutes. First initialize the ggplot object, with the dataframe to use and
appropriate mapping to aesthetics, then add geoms for a histogram as well as vertical reference
lines:
ggplot(worldcup, aes(x = Time)) +

geom_histogram(binwidth = 10) +
geom_vline(xintercept = 90 * 0:6,

color = "blue", alpha = 0.5)

Based on this graph, player’s times do cluster at 90-minute marks, especially at 270 minutes, which
would be approximately after three games, the number played by all teams that fail to make it out of
the group stage.

Constant aesthetics

Instead of mapping an aesthetic to an element of your data, you can use a constant value for it. For
example, you may want to make all the points green in the World Cup scatterplot. You can do that by
specifying the color aesthetic outside of an aes call when adding the points geom. For example:
ggplot(worldcup, aes(x = Time, y = Passes)) +
geom_point(color = "darkgreen")

138

You can do this with any of the aesthetics for a geom, including color, fill, shape, and size. If you
want to change the shape of points, in R, you use a number to specify the shape you want to use.
Figure 4.2 shows the shapes that correspond to the numbers 1 to 25 in the shape aesthetic. This
figure also provides an example of the difference between the color aesthetic (black for all these
example points) and fill aesthetic (red for these examples). If a geom has both a border and an
interior, the color aesthetic specifies the color of the border while the fill aesthetic specifies the color
of the interior. You can see that, for point geoms, some shapes include a fill (21 for example), while
some are either empty (1) or solid (19).

Figure 4.2: Examples of the shapes corresponding to different numeric choices for
the shape aesthetic. For all examples, color is set to black and fill to red.

139

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:shapeexamples

If you want to set color to be a constant value, you can do that in R using character strings for
different colors. Figure 4.3 gives an example of a few of the different blues available in R. To find
images that show all these named choices for colors in R, google “R colors” and search by “Images”
(for example, there is a pdf here: http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf).

Figure 4.3: Example of a few available shades of blue in R.

Later we will cover additioal ways of handling colors in R, including different color palettes you can
use. However, these “named” colors just shown can be a fast way to customize constant colors in R
plots.

Other useful plot additions

There are also a number of elements besides geoms that you can add onto a ggplot object using +.
A few that are used very frequently are:

Element Description

ggtitle Plot title

xlab, ylab x- and y-axis labels

xlim, ylim Limits of x- and y-axis

You can also use this syntax to customize plot scales and themes, which we will discuss later in this
section.

Example plots

In this subsection, we’ll show a few more examples of basic plots created with ggplot2. For the
example plots in this subsection, we’ll use a dataset in the faraway package called nepali. This
gives data from a study of the health of a group of Nepalese children. You can load this data using:
install.packages("faraway") ## Uncomment if you do not have the faraway package
installed
library(faraway)
data(nepali)

140

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:colorexamples
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

Each observation in this dataframe represents a measurement for a child, including some
physiological measurements like height and weight, and some children were measured multiple
times and so have multiple observations in this data. Before plotting this data, we cleaned it a bit. We
used tidyverse functions to select a subset of the columns: child id, sex, weight, height, and age. We
also used the distinct function from dplyr to limit the dataset to the first measurement for each
child.
nepali <- nepali %>%
select(id, sex, wt, ht, age) %>%
mutate(id = factor(id),

sex = factor(sex, levels = c(1, 2),
labels = c("Male", "Female"))) %>%

distinct(id, .keep_all = TRUE)
After this cleaning, the data looks like this:

head(nepali)
id sex wt ht age

1 120011 Male 12.8 91.2 41
2 120012 Female 14.9 103.9 57
3 120021 Female 7.7 70.1 8
4 120022 Female 12.1 86.4 35
5 120023 Male 14.2 99.4 49
6 120031 Male 13.9 96.4 46
We’ll use this cleaned dataset to show how to use ggplot2 to make histograms, scatterplots, and
boxplots.

Histograms

Histograms show the distribution of a single variable. Therefore, geom_histogram() requires only
one main aesthetic, x, which should be numeric. For example, to create a histogram of children’s
heights for the Nepali dataset (Figure 4.4), create a ggplot object with the data nepali and with the
height column (ht) mapped to the ggplot object’s x aesthetic. Then add a histogram geom:
ggplot(nepali, aes(x = ht)) +
geom_histogram()

Figure 4.4: Basic example of plotting a histogram with ggplot2. This histogram shows the
distribution of heights for the first recorded measurements of each child in the nepali dataset.
If you run the code with no arguments for binwidth or bins in geom_histogram, you will get a
message saying “stat_bin() using bins = 30. Pick better value with binwidth.”. This message is
just saying that a default number of bins was used to create the histogram. You can use arguments

141

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:nepalihist1

to change the number of bins used, but often this default is fine. You may also get a message that
observations with missing values were removed.
You can add some elements to this plot to customize it a bit. For example (Figure 4.5), you can add a
figure title (ggtitle) and clearer labels for the x-axis (xlab). You can also change the range of values
shown by the x-axis (xlim).
ggplot(nepali, aes(x = ht)) +
geom_histogram(fill = "lightblue", color = "black") +
ggtitle("Height of children") +
xlab("Height (cm)") + xlim(c(0, 120))

Figure 4.5: Example of adding ggplot elements to customize a histogram.

Note that these additional graphical elements are added on by adding function calls
to ggtitle, xlab, and xlim to our ggplot object.

Scatterplots

A scatterplot shows the association between two variables. To create a scatterplot, add a point
geom (geom_point) to a ggplot object. For example, to create a scatterplot of height versus age for
the Nepali data (Figure 4.6), you can run the following code:
ggplot(nepali, aes(x = ht, y = wt)) +
geom_point()

142

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:nepalihist2
https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:nepaliscatter1

Figure 4.6: Example of creating a scatterplot. This scatterplot shows the relationship between
children’s heights and weights within the nepali dataset.

Again, you can use some of the options and additions to change the plot appearance. For example,
to add a title, change the x- and y-axis labels, and change the color and size of the points on the
scatterplot (Figure 4.7), you can run:

ggplot(nepali, aes(x = ht, y = wt)) +
geom_point(color = "blue", size = 0.5) +
ggtitle("Weight versus Height") +
xlab("Height (cm)") + ylab("Weight (kg)")

143

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:nepaliscatter2

Figure 4.7: Example of adding ggplot elements to customize a scatterplot.

You can also try mapping a variable to the color aesthetic of the plot. For example, to use color to
show the sex of each child in the scatterplot (Figure 4.8), you can run add an additional mapping of
this optional aesthetic to the sex column of the nepali dataframe with the following code:
ggplot(nepali, aes(x = ht, y = wt, color = sex)) +
geom_point(size = 0.5) +
ggtitle("Weight versus Height") +
xlab("Height (cm)") + ylab("Weight (kg)")

144

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:nepaliscatter3

Figure 4.8: Example of mapping color to an element of the data in a scatterplot.

Boxplots

Boxplots are one way to show the distribution of a continuous variable. You can add a boxplot geom
with the geom_boxplot function. To plot a boxplot for a single, continuous variable, you can map
that variable to y in the aes call and map x to the constant 1. For example, to create a boxplot of the
heights of children in the Nepali dataset (Figure 4.9), you can run:
ggplot(nepali, aes(x = 1, y = ht)) +
geom_boxplot() +
xlab("")+ ylab("Height (cm)")

145

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:nepaliboxplot1

Figure 4.9: Example of creating a boxplot. The example shows the distribution of height data for
children in the nepali dataset.

You can also create separate boxplots, one for each level of a factor (Figure 4.10). In this case, you’ll
need to map columns in the input dataframe to two aesthetics (x and y) when initializing the ggplot
object The y variable is the variable for which the distribution will be shown, and the x variable
should be a discrete (categorical or TRUE/FALSE) variable, which will be used to group the variable.
ggplot(nepali, aes(x = sex, y = ht)) +
geom_boxplot() +
xlab("Sex")+ ylab("Height (cm)")

146

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:nepaliboxplot2

Figure 4.10: Example of creating separate boxplots, divided by a categorical grouping variable in the
data.

Extensions of ggplot2
There are a number of packages that extend ggplot2 and allow you to create a variety of interesting
plots. For example, you can use the ggpairs function from the GGally package to plot all pairs of
scatterplots for several variables (Figure 4.11).
library(GGally)
ggpairs(nepali %>% select(sex, wt, ht, age))

147

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:ggallyexample

Figure 4.11: Example of using ggpairs from the GGally package for exploratory data analysis.

Notice how this output shows continuous and binary variables differently. For example, the center
diagonal shows density plots for continuous variables, but a bar chart for the categorical variable.

See https://www.ggplot2-exts.org to find more ggplot2 extensions. Later in this course, we will give
an overview of how to make your own extensions.

148

https://www.ggplot2-exts.org/

Indonesia International Institute for Life Science

[BI2107]

LINUX AND R COMPUTATION

Laboratory Procotol Developer and Supervisor(s) Information

Protocol Developer : Nanda R. Pradana Ratnasari

Email : nanda.ratnasari@i3l.ac.id

Supervisor(s) email(s)

David Agustriawan david.agustriawan@i3l.ac.id

Nanda R. Pradana Ratnasari nanda.ratnasari@i3l.ac.id

Notice

1. Operate ONLY the computer assigned to you.

ww. If you have any troubleshoot please contact your supervisor or Building Management

xx. Do not rename files, adjust the dock size/icons, move items or files to the trash, or change

the system preferences unless directed to do so

yy. Do not exchange keyboards, mice, or other equipment among the computers without

notifying your supervisor

zz. Do not bring food or drinks into the lab unless it is in your backpack

2. Remain at your work center, respectful behavior promotes learning. Show integrity and respect for

class materials. Responsibility is fundamental. Misused equipment will be replaced by those who

damage it.

149

mailto:nanda.ratnasari@i3l.ac.id
mailto:david.agustriawan@i3l.ac.id
mailto:nanda.ratnasari@i3l.ac.id

Linux and R Programming

Session : 13

Date : December 10th, 2019

Laboratory :Bioinformatics laboratory

Overview

R is a language and environment for statistical computing and graphics. R provides a wide variety of statistical

(linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, …) and

graphical techniques, and is highly extensible. The S language is often the vehicle of choice for research in

statistical methodology, and R provides an Open Source route to participation in that activity. R is an integrated

suite of software facilities for data manipulation, calculation and graphical display. It includes

● an effective data handling and storage facility,

● a suite of operators for calculations on arrays, in particular matrices,

● a large, coherent, integrated collection of intermediate tools for data analysis,

● graphical facilities for data analysis and display either on-screen or on hardcopy, and

● a well-developed, simple and effective programming language which includes conditionals, loops,

user-defined recursive functions and input and output facilities.

Objective

Students are expected to understand on how applying R development tools.

- In week 9, students are expected to understand how to run an Application of data manipulation as it is

about fitting models to data.

Procedure

Basic Plotting With ggplot2

The ggplot2 package allows you to quickly plot attractive graphics and to visualize and explore
data. Objects created with ggplot2 can also be extensively customized with ggplot2 functions
(more on that in the next subsection), and because ggplot2 is built using grid graphics, anything that
cannot be customized using ggplot2 functions can often be customized using grid graphics. While
the structure of ggplot2 code differs substantially from that of base R graphics, it offers a lot of
power for the required effort. This first subsection focuses on useful, rather
than attractive graphs, since this subsection focuses on exploring rather than presenting data.
Later sections will give more information about making more attractive or customized plots, as you’d
want to do for final reports, papers, etc.
To show how to use basic ggplot2, we’ll use a dataset of Titanic passengers, their characteristics,
and whether or not they survived the sinking. This dataset has become fairly famous in data science,
because it’s used, among other things, for one of Kaggle’s long-term “learning” competitions, as well
as in many tutorials and texts on building classification models.
Kaggle is a company that runs predictive modeling competitions, with top competitors sometimes
winning cash prizes or interviews at top companies. At any time, Kaggle is typically is hosting several
competitions, including some with no cash reward that are offered to help users get started with
predictive modeling.

Doing Kaggle competitions is a great way to practice working with data and building models. Kaggle
also has forums, repositories of code script for different competitions, and a blog that includes tips
from past winners.

150

https://www.kaggle.com/

To get this dataset, you’ll need to install and load the titanic package, and then you can load and
rename the training datasets, which includes data on about two-thirds of the Titanic passengers:
install.packages("titanic") # If you don't have the package installed
library(titanic)
data("titanic_train", package = "titanic")
titanic <- titanic_train
The other data example we’ll use in this subsection is some data on players in the 2010 World Cup.
This is available from the faraway package:
install.packages("faraway") # If you don't have the package installed
library(faraway)
data("worldcup")
Unlike most data objects you’ll work with, the data that comes with an R package will often have its
own help file. You can access this using the ? operator. For example, try running: ?worldcup.
All of the plots we’ll make in this subsection will use the ggplot2 package (another member of the
tidyverse!). If you don’t already have that installed, you’ll need to install it. You then need to load the
package in your current session of R:
install.packages("ggplot2") ## Uncomment and run if you don't have `ggplot2`
installed
library(ggplot2)
The process of creating a plot using ggplot2 follows conventions that are a bit different than most of
the code you’ve seen so far in R (although it is somewhat similar to the idea of piping we introduced
in an earlier course). The basic steps behind creating a plot with ggplot2 are:

3. Create an object of the ggplot class, typically specifying the data and some or all of
the aesthetics;

4. Add on geoms and other elements to create and customize the plot, using +.

You can add on one or many geoms and other elements to create plots that range from very simple
to very customized. We’ll focus on simple geoms and added elements first, and then explore more
detailed customization later.

Initializing a ggplot object
The first step in creating a plot using ggplot2 is to create a ggplot object. This object will not, by
itself, create a plot with anything in it. Instead, it typically specifies the data frame you want to use
and which aesthetics will be mapped to certain columns of that data frame (aesthetics are explained
more in the next subsection).
Use the following conventions to initialize a ggplot object:

Generic code
object <- ggplot(dataframe, aes(x = column_1, y = column_2))
or, if you don't need to save the object
ggplot(dataframe, aes(x = column_1, y = column_2))
The dataframe is the first parameter in a ggplot call and, if you like, you can use the parameter
definition with that call (e.g., data = dataframe). Aesthetics are defined within an aes function call
that typically is used within the ggplot call.
In ggplot2, life is much easier if everything you want to plot is included in a dataframe as a column,
and the first argument to ggplot must be a dataframe. This format has been a bit hard for some
base R graphics users to adjust to, since base R graphics tends to plot based on vector, rather than
dataframe, inputs. Trying to pass in a vector rather than a dataframe can be a common reason
for ggplot2 errors for all R users.

Plot aesthetics

Aesthetics are properties of the plot that can show certain elements of the data. For example, in
Figure 4.1, color shows (i.e., is mapped to) gender, x-position shows height, and y-position shows
weight in a sample data set of measurements of children in Nepal.

151

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:aesmapex

Figure 4.1: Example of how different properties of a plot can show different elements to the data.
Here, color indicates gender, position along the x-axis shows height, and position along the y-axis
shows weight. This example is a subset of data from the nepali dataset in the faraway package.
Any of these aesthetics could also be given a constant value, instead of being mapped to an element
of the data. For example, all the points could be red, instead of showing gender. Later in this section,
we will describe how to use these constant values for aesthetics. We’ll discuss how to code this later
in this section.

Which aesthetics are required for a plot depend on which geoms (more on those in a second) you’re
adding to the plot. You can find out the aesthetics you can use for a geom in the “Aesthetics” section
of the geom’s help file (e.g., ?geom_point). Required aesthetics are in bold in this section of the help
file and optional ones are not. Common plot aesthetics you might want to specify include:

Code Description

X Position on x-axis

Y Position on y-axis

Shape Shape

Color Color of border of elements

Fill Color of inside of elements

Size Size

Alpha Transparency (1: opaque; 0: transparent)

152

Linetype Type of line (e.g., solid, dashed)

Creating a basic ggplot plot

To create a plot, you need to add one of more geoms to the ggplot object. The system of creating
a ggplot object, mapping aesthetics to columns of the data, and adding geoms makes more sense
once you try a few plots. For example, say you’d like to create a histogram showing the fares paid by
passengers in the example Titanic data set. To plot the histogram, you’ll first need to create
a ggplot object, using a dataframe with the “Fares” column you want to show in the plot. In creating
this ggplot object, you only need one aesthetic (x, which in this case you want to map to “Fares”),
and then you’ll need to add a histogram geom. In code, this is:
ggplot(data = titanic, aes(x = Fare)) +
geom_histogram()

This code sets the dataframe as the titanic object in the user’s working session, maps the values
in the Fare column to the x aesthetic, and adds a histogram geom to generate a histogram.
If R gets to the end of a line and there is not some indication that the call is not over (e.g., %>% for
piping or + for ggplot2 plots), R interprets that as a message to run the call without reading in further
code. A common error when writing ggplot2 code is to put the + to add a geom or element at the
beginning of a line rather than the end of a previous line— in this case, R will try to execute the call
too soon. To avoid errors, be sure to end lines with +, don’t start lines with it.
There is some flexibility in writing the code to create this plot. For example, you could specify the
aesthetic for the histogram in an aes statement when adding the geom (geom_histogram) rather
than in the ggplot call:
ggplot(data = titanic) +
geom_histogram(aes(x = Fare))

Similarly, you could specify the dataframe when adding the geom rather than in the ggplot call:
ggplot() +
geom_histogram(data = titanic, aes(x = Fare))

153

Finally, you can pipe the titanic dataframe into a ggplot call, since the ggplot function takes a
dataframe as its first argument:
titanic %>%
ggplot() +
geom_histogram(aes(x = Fare))

or
titanic %>%
ggplot(aes(x = Fare)) +
geom_histogram()

While all of these work, for simplicity we will use the syntax of specifying the data and aesthetics in
the ggplot call for most examples in this subsection. Later, we’ll show how this flexibility can be
used to use data from differents dataframe for different geoms or change aesthetic mappings
between geoms.
A key thing to remember, however, is that ggplot is not flexible about whether you specify
aesthetics within an aes call or not. We will discuss what happens if you do not later in the book, but
it is very important that if you want to show values from a column of the data using aesthetics like
color, size, shape, or position, you remember to make that specification within aes. Also, be sure that
you specify the dataframe before or when you specify aesthetics (i.e., you can’t specify aesthetics in
the ggplot statement if you haven’t specified the dataframe yet), and if you specify a dataframe
within a geom, be sure to use data = syntax rather than relying on parameter position, as data is not
the first parameter expected for geom functions.
When you run the code to create a plot in RStudio, the plot will be shown in the “Plots” tab in one of
the RStudio panels. If you would like to save the plot, you can do so using the “Export” button in this
tab. However, if you would like to use code in an R script to save a plot, you can do so (and it’s more
reproducible!).

To save a plot using code in a script, take the following steps: (1) open a graphics device (e.g., using
the function pdf or png); (2) run the code to draw the map; and (3) close the graphics device using
the dev.off function. Note that the function you use to open a graphics device will depend on the
type of device you want to open, but you close all devices with the same function (dev.off).

Geoms

Geom functions add the graphical elements of the plot; if you do not include at least one geom,
you’ll get a blank plot space. Each geom function has its own arguments to adjust how the graph is
created. For example, when adding a historgram geom, you can use the bins argument to change
the number of bins used to create the histogram— try:
ggplot(titanic, aes(x = Fare)) +
geom_histogram(bins = 15)

As with any R functions, you can find out more about the arguments available for a geom function by
reading the function’s help file (e.g., ?geom_histogram).
Geom functions differ in the aesthetic inputs they require. For example,
the geom_histogram funciton only requires a single aesthetic (x). If you want to create a scatterplot,
you’ll need two aesthetics, x and y. In the worldcup dataset, the Time column gives the amount of
time each player played in the World Cup 2010 and the Passes column gives the number of passes
he made. To see the relationship between these two variables, you can create a ggplot object with
the dataframe, mapping the x aesthetic to Time and the y aesthetic to Passes, and then adding a
point geom:
ggplot(worldcup, aes(x = Time, y = Passes)) +
geom_point()

154

All geom functions have both required and accepted aesthetics. For example,
the geom_point function requires x and y, but the function will also
accept alpha (transparency), color, fill, group, size, shape, and stroke aesthetics. If you try to
create a geom without one its required aesthetics, you will get an error:
ggplot(worldcup, aes(x = Time)) +
geom_point()

Error: geom_point requires the following missing aesthetics: y
You can, however, add accepted aesthetics to the geom if you’d like; for example, to use color to
show player position and size to show shots on goal for the World Cup data, you could call:

ggplot(worldcup, aes(x = Time, y = Passes,
color = Position, size = Shots)) +

geom_point()

155

The following table gives some of the geom functions you may find useful in ggplot2, along with the
required aesthetics and some of the most useful some useful specific arguments for each geom
function (there are other useful arguments that can be applied to many different geom functions,
which will be covered later). The elements created by these geom functions are usually clear from the
function names (e.g., geom_point plots points; geom_segment plots segments).

Table 4.1: MVPs of geom functions

Function Common aesthetics Common arguments

geom_point() x, y

geom_line() x, y arrow, na.rm

geom_segment() x, y, xend, yend arrow, na.rm

geom_path() x, y na.rm

geom_polygon() x, y

geom_histogram() x bins, binwidth

geom_abline() intercept, slope

156

geom_hline() yintercept

geom_vline() xintercept

geom_smooth() x, y method, se, span

geom_text() x, y, label parse, nudge_x, nudge_y

Using multiple geoms

Several geoms can be added to the same ggplot object, which allows you to build up layers to
create interesting graphs. For example, we previously made a scatterplot of time versus shots for
World Cup 2010 data. You could make that plot more interesting by adding label points for
noteworthy players with those players’ team names and positions. First, you can create a subset of
data with the information for noteworthy players and add a column with the text to include on the
plot. Then you can add a text geom to the previous ggplot object:
library(dplyr)
noteworthy_players <- worldcup %>% filter(Shots == max(Shots) |

Passes == max(Passes)) %>%
mutate(point_label = paste(Team, Position, sep = ", "))

ggplot(worldcup, aes(x = Passes, y = Shots)) +
geom_point() +
geom_text(data = noteworthy_players, aes(label = point_label),

vjust = "inward", hjust = "inward")

157

In this example, we’re using data from different dataframes for different geoms. We’ll discuss how
that works more later in this section.

As another example, there seemed to be some horizontal clustering in the scatterplot we made of
player time versus passes made for the worldcup data. Soccer games last 90 minutes each, and
different teams play a different number of games at the World Cup, based on how well they do. To
check if horizontal clustering is at 90-minute intervals, you can plot a histogram of player time (Time),
with reference lines every 90 minutes. First initialize the ggplot object, with the dataframe to use and
appropriate mapping to aesthetics, then add geoms for a histogram as well as vertical reference
lines:
ggplot(worldcup, aes(x = Time)) +

geom_histogram(binwidth = 10) +
geom_vline(xintercept = 90 * 0:6,

color = "blue", alpha = 0.5)

Based on this graph, player’s times do cluster at 90-minute marks, especially at 270 minutes, which
would be approximately after three games, the number played by all teams that fail to make it out of
the group stage.

Constant aesthetics

Instead of mapping an aesthetic to an element of your data, you can use a constant value for it. For
example, you may want to make all the points green in the World Cup scatterplot. You can do that by
specifying the color aesthetic outside of an aes call when adding the points geom. For example:
ggplot(worldcup, aes(x = Time, y = Passes)) +
geom_point(color = "darkgreen")

158

You can do this with any of the aesthetics for a geom, including color, fill, shape, and size. If you
want to change the shape of points, in R, you use a number to specify the shape you want to use.
Figure 4.2 shows the shapes that correspond to the numbers 1 to 25 in the shape aesthetic. This
figure also provides an example of the difference between the color aesthetic (black for all these
example points) and fill aesthetic (red for these examples). If a geom has both a border and an
interior, the color aesthetic specifies the color of the border while the fill aesthetic specifies the color
of the interior. You can see that, for point geoms, some shapes include a fill (21 for example), while
some are either empty (1) or solid (19).

Figure 4.2: Examples of the shapes corresponding to different numeric choices for
the shape aesthetic. For all examples, color is set to black and fill to red.

159

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:shapeexamples

If you want to set color to be a constant value, you can do that in R using character strings for
different colors. Figure 4.3 gives an example of a few of the different blues available in R. To find
images that show all these named choices for colors in R, google “R colors” and search by “Images”
(for example, there is a pdf here: http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf).

Figure 4.3: Example of a few available shades of blue in R.

Later we will cover additioal ways of handling colors in R, including different color palettes you can
use. However, these “named” colors just shown can be a fast way to customize constant colors in R
plots.

Other useful plot additions

There are also a number of elements besides geoms that you can add onto a ggplot object using +.
A few that are used very frequently are:

Element Description

ggtitle Plot title

xlab, ylab x- and y-axis labels

xlim, ylim Limits of x- and y-axis

You can also use this syntax to customize plot scales and themes, which we will discuss later in this
section.

Example plots

In this subsection, we’ll show a few more examples of basic plots created with ggplot2. For the
example plots in this subsection, we’ll use a dataset in the faraway package called nepali. This
gives data from a study of the health of a group of Nepalese children. You can load this data using:
install.packages("faraway") ## Uncomment if you do not have the faraway package
installed
library(faraway)
data(nepali)

160

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:colorexamples
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

Each observation in this dataframe represents a measurement for a child, including some
physiological measurements like height and weight, and some children were measured multiple
times and so have multiple observations in this data. Before plotting this data, we cleaned it a bit. We
used tidyverse functions to select a subset of the columns: child id, sex, weight, height, and age. We
also used the distinct function from dplyr to limit the dataset to the first measurement for each
child.
nepali <- nepali %>%
select(id, sex, wt, ht, age) %>%
mutate(id = factor(id),

sex = factor(sex, levels = c(1, 2),
labels = c("Male", "Female"))) %>%

distinct(id, .keep_all = TRUE)
After this cleaning, the data looks like this:

head(nepali)
id sex wt ht age

1 120011 Male 12.8 91.2 41
2 120012 Female 14.9 103.9 57
3 120021 Female 7.7 70.1 8
4 120022 Female 12.1 86.4 35
5 120023 Male 14.2 99.4 49
6 120031 Male 13.9 96.4 46
We’ll use this cleaned dataset to show how to use ggplot2 to make histograms, scatterplots, and
boxplots.

Histograms

Histograms show the distribution of a single variable. Therefore, geom_histogram() requires only
one main aesthetic, x, which should be numeric. For example, to create a histogram of children’s
heights for the Nepali dataset (Figure 4.4), create a ggplot object with the data nepali and with the
height column (ht) mapped to the ggplot object’s x aesthetic. Then add a histogram geom:
ggplot(nepali, aes(x = ht)) +
geom_histogram()

Figure 4.4: Basic example of plotting a histogram with ggplot2. This histogram shows the
distribution of heights for the first recorded measurements of each child in the nepali dataset.
If you run the code with no arguments for binwidth or bins in geom_histogram, you will get a
message saying “stat_bin() using bins = 30. Pick better value with binwidth.”. This message is
just saying that a default number of bins was used to create the histogram. You can use arguments

161

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:nepalihist1

to change the number of bins used, but often this default is fine. You may also get a message that
observations with missing values were removed.
You can add some elements to this plot to customize it a bit. For example (Figure 4.5), you can add a
figure title (ggtitle) and clearer labels for the x-axis (xlab). You can also change the range of values
shown by the x-axis (xlim).
ggplot(nepali, aes(x = ht)) +
geom_histogram(fill = "lightblue", color = "black") +
ggtitle("Height of children") +
xlab("Height (cm)") + xlim(c(0, 120))

Figure 4.5: Example of adding ggplot elements to customize a histogram.

Note that these additional graphical elements are added on by adding function calls
to ggtitle, xlab, and xlim to our ggplot object.

Scatterplots

A scatterplot shows the association between two variables. To create a scatterplot, add a point
geom (geom_point) to a ggplot object. For example, to create a scatterplot of height versus age for
the Nepali data (Figure 4.6), you can run the following code:
ggplot(nepali, aes(x = ht, y = wt)) +
geom_point()

162

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:nepalihist2
https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:nepaliscatter1

Figure 4.6: Example of creating a scatterplot. This scatterplot shows the relationship between
children’s heights and weights within the nepali dataset.

Again, you can use some of the options and additions to change the plot appearance. For example,
to add a title, change the x- and y-axis labels, and change the color and size of the points on the
scatterplot (Figure 4.7), you can run:

ggplot(nepali, aes(x = ht, y = wt)) +
geom_point(color = "blue", size = 0.5) +
ggtitle("Weight versus Height") +
xlab("Height (cm)") + ylab("Weight (kg)")

163

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:nepaliscatter2

Figure 4.7: Example of adding ggplot elements to customize a scatterplot.

You can also try mapping a variable to the color aesthetic of the plot. For example, to use color to
show the sex of each child in the scatterplot (Figure 4.8), you can run add an additional mapping of
this optional aesthetic to the sex column of the nepali dataframe with the following code:
ggplot(nepali, aes(x = ht, y = wt, color = sex)) +
geom_point(size = 0.5) +
ggtitle("Weight versus Height") +
xlab("Height (cm)") + ylab("Weight (kg)")

164

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:nepaliscatter3

Figure 4.8: Example of mapping color to an element of the data in a scatterplot.

Boxplots

Boxplots are one way to show the distribution of a continuous variable. You can add a boxplot geom
with the geom_boxplot function. To plot a boxplot for a single, continuous variable, you can map
that variable to y in the aes call and map x to the constant 1. For example, to create a boxplot of the
heights of children in the Nepali dataset (Figure 4.9), you can run:
ggplot(nepali, aes(x = 1, y = ht)) +
geom_boxplot() +
xlab("")+ ylab("Height (cm)")

165

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:nepaliboxplot1

Figure 4.9: Example of creating a boxplot. The example shows the distribution of height data for
children in the nepali dataset.

You can also create separate boxplots, one for each level of a factor (Figure 4.10). In this case, you’ll
need to map columns in the input dataframe to two aesthetics (x and y) when initializing the ggplot
object The y variable is the variable for which the distribution will be shown, and the x variable
should be a discrete (categorical or TRUE/FALSE) variable, which will be used to group the variable.
ggplot(nepali, aes(x = sex, y = ht)) +
geom_boxplot() +
xlab("Sex")+ ylab("Height (cm)")

166

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:nepaliboxplot2

Figure 4.10: Example of creating separate boxplots, divided by a categorical grouping variable in the
data.

Extensions of ggplot2
There are a number of packages that extend ggplot2 and allow you to create a variety of interesting
plots. For example, you can use the ggpairs function from the GGally package to plot all pairs of
scatterplots for several variables (Figure 4.11).
library(GGally)
ggpairs(nepali %>% select(sex, wt, ht, age))

167

https://bookdown.org/rdpeng/RProgDA/basic-plotting-with-ggplot2.html#fig:ggallyexample

Figure 4.11: Example of using ggpairs from the GGally package for exploratory data analysis.

Notice how this output shows continuous and binary variables differently. For example, the center
diagonal shows density plots for continuous variables, but a bar chart for the categorical variable.

See https://www.ggplot2-exts.org to find more ggplot2 extensions. Later in this course, we will give
an overview of how to make your own extensions.

168

https://www.ggplot2-exts.org/

Indonesia International Institute for Life Science

[BI2107]

LINUX AND R COMPUTATION

Laboratory Procotol Developer and Supervisor(s) Information

Protocol Developer : Nanda R. Pradana Ratnasari

Email : nanda.ratnasari@i3l.ac.id

Supervisor(s) email(s)

David Agustriawan david.agustriawan@i3l.ac.id

Nanda R. Pradana Ratnasari nanda.ratnasari@i3l.ac.id

Notice

1. Operate ONLY the computer assigned to you.

aaa. If you have any troubleshoot please contact your supervisor or Building Management

bbb. Do not rename files, adjust the dock size/icons, move items or files to the trash, or

change the system preferences unless directed to do so

ccc. Do not exchange keyboards, mice, or other equipment among the computers without

notifying your supervisor

ddd. Do not bring food or drinks into the lab unless it is in your backpack

2. Remain at your work center, respectful behavior promotes learning. Show integrity and respect for

class materials. Responsibility is fundamental. Misused equipment will be replaced by those who

damage it.

169

mailto:nanda.ratnasari@i3l.ac.id
mailto:david.agustriawan@i3l.ac.id
mailto:nanda.ratnasari@i3l.ac.id

Linux and R Programming

Session : 14
Date : December 10th, 2019

Laboratory :Bioinformatics laboratory

Overview

R is a language and environment for statistical computing and graphics. R provides a wide variety of statistical

(linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, …) and

graphical techniques, and is highly extensible. The S language is often the vehicle of choice for research in

statistical methodology, and R provides an Open Source route to participation in that activity. R is an integrated

suite of software facilities for data manipulation, calculation and graphical display. It includes

● an effective data handling and storage facility,

● a suite of operators for calculations on arrays, in particular matrices,

● a large, coherent, integrated collection of intermediate tools for data analysis,

● graphical facilities for data analysis and display either on-screen or on hardcopy, and

● a well-developed, simple and effective programming language which includes conditionals, loops,

user-defined recursive functions and input and output facilities.

Objective

Students are expected to understand on how applying R development tools.

- In week 9, students are expected to understand how to run an Application of data manipulation as it is

about fitting models to data.

Procedure

Exercise
1. For this part, you need to create a regression model using particular data provided in R.

● Call the CO2 data
● Discuss the summary and explain the scatterplot between “conc” and “uptake”

variables
● Determine the independent and dependent variables
● Analyse the data using regression analysis for “conc” and “uptake” variables
● Examine the results (including p_value for each intercept and the Adjusted R-square)

and explain!
1. Generate random data with uniform distribution and try to create an algorithm to find the

maximum value of the data.
● Generate 20 uniform random data with range from 0 to 10
● Create an algorithm to find the minimum value (using for and if function)
● Check your result using function min() to ensure that your code is running well

2. Generate random data with normal distribution and try to create an algorithm to find the
maximum value of the data.

● Generate 10 normal random data with mean=0 and standar deviation=3
● Create an algorithm to find the maximum value (using for and if function)
● Check your result using function max() to ensure that your code is running well

170

4. For this section, you are asked to create a ggplot by following these steps
● Call a data “diamons” provided in the package
● Create a ggplot from the new data and differentiate by variable “color” using different

colour
● Cut the data to get rows 1-30
● Create a ggplot from the new data and differentiate by variable “cut” using different

shape

171

Application of Statistics and

Data Sciences in Cancer

Nanda Rizqia Pradana Ratnasari, S.Si, MStat

Dr. rer.nat. Arli Aditya Parikesit

David Agustriawan.,PhD

1. Introduction

Cancer is one of diseases caused by the uncontrolled growth of abnormal cells that

potentially spread or invade other cells and parts of the body. Cells of cancers develop when

the normal cells of bodies lost their ability to quit thriving into new cells. When those cells

grow uncontrollably, there might be changes in the DNA sequence, known as a mutation [1].

Cancer is also notable as the fastest evolving, an adapting and ever changing complex disease

due to the genetic makeup [2] and it becomes one of four non-communicable diseases (NCD)

as the causes of cancer are not completely understandable [3]. Numerous factors are noted to

escalate the probability of occurrence of the disease, including the modifiable factors affected

by behavior and the inherited conditions. As a multi-genic and multicellular disease, cancer

can arise from all cell types with a multi-factorial etiology [8]. The increasing of risk factors

may initiate or boost the growth of the disease and this uncontrolled growth can result in

death [4]. In general, cancer is responsible for 14.6% of all human deaths and 63% of those

numbers is reported to be death from developing countries [3]. The increasing number of the

cases might be generated by several factors including population growth, ageing as well as

the changing prevalence of certain causes of cancer linked to social and economic

development [9].

Currently, there are more than 100 types of different cancers that attack human body and

involve more than 500 genes in it [3]. The International Agency for Research on Cancer in

2012 reported that the number of death caused by the disease is estimated around 7.6

million worldwide due to increasing 12.7 million new cases per year [5, 6, 7]. This number

increase to 9.6 million cancer deaths in 2018 with the disease burden rises to 18.1 million

new cases [9]. Data gained from research and various resources show that there is an

exponential growth of cancer. These data are complex and heterogeneous [3, 24]. Further

report mentioned that one in 5 men and one in 6 women worldwide develop cancer during

their lifetime, and one in 8 men and one in 11 women die from the disease. Worldwide, the

total number of people who are alive within 5 years of a cancer diagnosis, called the 5-year

prevalence, is estimated to be 43.8 million . Globally, nearly half of the new cases and more

than 50% of the deaths caused by cancer occur in Asia [9].

172

Data Science which is an interdisciplinary subject involving statistics, scientific methods,

processes and systems to extract knowledge from data has a good potential to revolutionize

and improving health care, including advancing knowledge and information related to

cancers. The medical areas has been generating and storing data for several decades in the

form of clinical report, case study and hospital records, specifically in area of gene

expression, next generation DNA sequence data, proteomics and metabolomics to discover

effective drugs and treatments for the disease. Data Science, combined with other resource

and knowledge, can help to resolve any challenges [2]. Statistics and Data Sciences become

significant sectors to all areas of cancer. When data science can provide comprehensive

information regarding characteristics and trend of population to present them in

apprehensible explaination, statistics enable the data to be analyzed using valid methods,

thus, the data and analysis can be an evidence for correct implementation [10]. Therefore,

data science can elucidate broad and detail information about cancer and variables related to

it, including explanation about medications, trend and patients. The information may be

presented in visual or mathematical methods [11]. Moreover, statistics can account methods

in cancer research, including the relationship of variables or covariates in cancer, how they

react or affect each other, computational methods for examine particular treatments for

cancer and predict future possibility of cancer and its medications, as well as explain how to

create a model to do early diagnosis or forcasting about cancer cases [10, 11, 12]. Various

medical project have been launched as part of implications and understanding of medical

decision making. Data science enable researchers to analyze all kind of data to gain

information and answer numerous medical question [24].

2. The Conceptual of This Study

This study will discuss about methods that might be applied in statistical analysis regarding

cancer cases.

2.1 Data Science Analytic and Cancer

Data science in medical term encompasses many areas including Next Generation

Sequencing (NGS) of the individual’s genome, mRNA expression of normal and disease

tissues, clinical trials, drug efficacy and medical records, for both in visuals or characters.

The main goals of using data in cancer research are to transform the current approaches

for diagnostics and treatments that have normally been done in wet-lab to a new

dimension using data analytics by doing both identification and validations of the data.

The dry analysis using data science enable to save time and budget of the research as

data is ever available in many areas and can help people working effectively [2].

173

However, to apply big data technique and develop a sustainable healthcare system,

researchers need to invest several amount of money and time [12].

Among numerous areas, cancer research area has huge amount of data science and

occupied various statistical analysis [13-16]. Cancer data can be analyzed to find its

distribution in each state or time. Variables that are affecting or affected by the disease

can also be checked, in order to monitor the growth of the cells or the numbers of cases.

In term of this study, regression analysis or analysis of variance can be conducted. For

more advance study, the number of future case or the amount of cell in particular time is

able to be predicted using time series or spatial analysis [2, 10, 12]. The high level of

data science and statistical analysis is data collecting, modeling and analyzing to help in

decision making. Those complexity and benefits of Data Science, however, it also faces

some challenge with respect to its specific application such as: lacking of available

variables, demanding reliable software, too much information that may not always been

utilized [2, 23].

Source: David Wilks, Data at Government Digital Service, UK

Graph 1. Data Processing in Data Science and Statistical Analysis

2.2 Statistical Method in Cancer Research

The statistical Method that will be discussed in this study includes:

1. Kernel Density and Survival Analysis

2. Chi Square for Independence

3. Correlation

4. Significance Test (Hypothesis Test)

5. Regression

6. Analysis of Variance.

Table 1. Type of Statistical Analysis in Medical

Type of Analysis The Purpose of The Test

Kernel Density and Survival Analysis A non-parametric method to identify the

probability distribution of survival

analysis and estimate failure density

Chi Square for Independence to investigate the relationship between

categorical or qualitative variables

174

Correlation to find and calculate the relationship and

closeness between quantitative variables

Significance Test (Hypothesis Test) to measure the strength of parameters,

whether it is different to the given value

or not

Regression to find the relationship between

independent and dependent variables

3. Kernel Density and Survival Analysis

Kernel density is also known as non-parametric method that can identify the probability

distribution of survival analysis and estimate failure density [17]. Let be independent and

identically distributed sample of random variables, then the nonparametric kernel density

can be written as

where K is the kernel and is the estimate of the optimal bandwidth

The combination of the best Kernel values and optimal bandwidth needs to be tested to

obtain the best kernel density estimation. Based on previous experiments, researchers gain

formulas for Kernel and the bandwidth which are:

with

where SD is standard deviation and IQR is interquartile range.

The kernel density of survival function is given by

Meanwhile, mathematically the survival function can be defined as

denotes the survival time of event and describe the failure probability distribution.

The survival time of event defines how long a patient survives before they dead.

4. Chi Square Test of Independence

Chi square test of independence is also known as Pearson Chi square test [20]. Chi square test

of independence is used to investigate the relationship between categorical or qualitative

variables. In the cancer case, the analysis can be done to check the association between

cancer and the location of the patients, gender or the group of age [18]. Statistical analysis of

chi square provides information not only about significance of different between

175

observations, but also can explain which variable account for the different. As one of the

non-parametric test, chi square of independence test is noted as a distribution-free-test that

does not require any assumption to be conducted [20]. In general a non-parametric test is

utilized for data that have a level of measurements in nominal or ordinal, the sample size is

not necessarily equal and violated one of parametric assumption such as the distribution of

the data is skewed or kurtotic, it suffers from heterocesdasticity or data is no longer in the

ratio or interval measurement. Meanwhile, the specific assumptions for the chi-square test

are:

a. The data in the cell of observed table should be frequency

b. The level of variables should be mutually exclusive

c. Each subject may contribute data to one and only one cell in the chi square

d. The study group should be independent and the variables should be in nominal or

ordinal level with multinomial probability distribution

e. The value in the expected cell should be 5 or more [18, 19].

To conduct this test we need to identify hypothesis whether there is association between the

variables or not [18, 20].

The hypotheses for this test are:

: there is no association between two variables

: there is a significant association two variables

o conduct the test, the raw data are converted into contingency table, which is the table that

consist of frequency for mutually exclusive of two categories. This table also known as

observed table. The example of observed table can be found in table 1 of McHugh’s paper [20]

and Table 1 of Altham’s paper [19].

Table 2. Result of the vaccination program

Health Outcome Unvaccinated Vaccinated Total

Suffer from cancer 23 5 28

Suffer from other

disease

8 10 18

No cancer 61 77 138

Total 92 92 184

Source: McHugh, M. (2013). The Chi-square test of independence. with modification

176

The table above show the frequency of patients observed to find the relationship between

vaccination and the health outcome. With the data in the observed form, the researchers can

proceed the values in the cells for calculating the . The formula for calculating the chi square

is

where is the actual count of cases in each cell of the table and is the expected value obtained

using this formula

represents the row marginal for that cell

represents the column marginal for that cell

represents the total sample size.

Further example and explanation regarding this value can be found in the Table 3 of

(McHugh, 2013)[20].

Table 3. Table of Expected Value and Chi-Square cell for the vaccination program

Health Outcome Unvaccinated Vaccinated

Suffer from cancer 13.92 (5.92) 12.57 (4.56)

Suffer from other disease 8.95 (0.10) 9.05 (9.05)

No cancer 69.12 (0.95) 69.88 (0.73)

Source: McHugh, M. (2013). The Chi-square test of independence. with modification

Once the cell χ2 values have been calculated, they are summed to obtain the χ2 statistic for

the table. To conclude the decision, the statistics obtained from calculation should be

compared to table with degree of freedom (number of rows-1)*(number of columns -1). The

null hypothesis is rejected if the statistics is bigger than table or p-value of the is less than

the level of significance.

Rejecting the null hypothesis means that there is no association or relation between variables

[18, 19].

Based on values in the cells of table 2, the total value of is 12.35 which is less than .

Therefore, there is enough evidence to reject . Thus, there is association between health

outcomes with vaccination program.

5. Correlation

Correlation becomes another analysis to find and calculate the relationship and closeness

between quantitative variables. The linear correlation coefficient measures the degree

association between variables. The negative sign in the measurements represents negative

177

relation between observed feature, one variable may increase while the other variable

decrease [27]. Two correlation coefficient normally used in application research are noted as

Pearson’s Correlation and Spearman’s Rank Correlation [28].

In general Pearson’s Correlation Coefficient formula is denoted below:

where are measures of variable and is the number of observation. The formula or also can

be written as

The correlation values has range from -1 to +1 and both values represent very strong

association between two variables. Meanwhile, the 0 (zero) value or any number close to

zero that be obtained from calculation indicates the no-association between variables [27].

Gogtay and Thatte in [29] explained the interpretation of correlation coefficient based on the

value.

Source: Gogtay and Thatte (2017, p. 79) and Senthilnathan (2019)

Graph 2. The interpretation of correlation coefficient

Source: Gogtay and Thatte (2017, p. 79) and Senthilnathan (2019)

Graph 2. The interpretation of correlation coefficient

Correlation is not necessarily causation effects. However, when it is known that there is

causation between independent and dependent variables, correlation can be analyzed using

linear correlation coefficient or coefficient of determination [29]. This value provides

information on how much accuracy and variation of dependent variable respect to

independent variables.

Correlation analysis in cancer case has been applied by Lin and Huang [30] to find the

connection between molecular subtype which have similar phenotype with their

transcriptional profile. The data analyzed in the study conducted by Lin and Huang are the

gene expression. The other research using correlation analysis in cancer case was conducted

by Ling at all to find the association between Gene Expression and Cancer Diagnosis [31].

6. Significance Test (Hypothesis Test)

178

A significant test enables researchers to measure the strength of parameters of events or

experiments. It can analyze whether the difference in the observation is small enough to

occur by chance if there is no different in population. To carry out the test of significance or

hypothesis test, a researcher should suppose that there is no different between two

treatments [32]. The method of hypothesis testing is to determine the likelihood if the

statement is true. The test is normally related to mean or variance [34].

The hypothesis that there is no different is called the null hypothesis, while the alternative

hypothesis states that there is different between the treatments. The direction of the

alternative hypothesis explains type of the test. Two-side test will be conducted if probability

of extreme values in both tails of normal curve is used [32]. In two-sided test, the null

hypothesis states that the parameters equals to a provided value. Meanwhile, in one-sided

test, the null hypothesis will present that the parameter is less or bigger than the particular

value provided in the test [34].

The general procedure for a significant test is as follow:

a. Determining the null and alternative hypothesis

b. Calculating the value of the test statistics

c. Referring to the test statistics to determine which distribution should be followed;

then comparing the statistics value with the value coming from the distribution

d. Finding the probability of the test statistics

e. Concluding that the data se consistent with null hypothesis or not: either reject or fail

to reject the null hypothesis[32, 34]

In term of hypothesis concerning mean, there are two type of statistical test, which are z-test

and t-test. Z-test is used for the mean of population, when we have big sample (greater than

30), when the data is normally distributed and the standard deviation is known. Meanwhile,

the t-test should be conducted when the standard deviation is unknown or when the number

of data is small [35]. For single mean test, statistic value can be derived from this formula:

Meanwhile, the equality of mean test can be conduct using statistic value:

Test decision can be determined by comparing the statistic value with the critical value. The

null hypothesis is rejected if for one-sided test or for two-sided test. Similar to the t-test,

where the null hypothesis is rejected if for one-sided test and for two-sided test, where df is

degree of freedom which is obtained from [32-35].

179

If the standard deviation is unknown, it will be estimated using sample standard deviation

with the formula [33]:

Graph 3. Normal curve for conducting significant test decision

The hypothesis test can be conducted in are of cancer, for example to check the efficacy or

effectiveness of drugs or treatments for curing a particular disease. Another research might

be undertaken to investigate the effect of characteristic of patients to their survival power.

Some applications of hypothesis test in cancer areas can be found in [1, 33].

In statistics test of hypothesis, a researcher needs to consider two kinds of error in order to

make a good decision for their research. The type I error () declare to reject when it is

actually true, while type II error () state to accept when it is really false. Hence, the power is

the chance of not making a type II error and noted as () [32, 33].

Table 4. Table of Error Type in Statistical Test

Hypothesis true false

true Type I error

false Type II error

Graph 4. The area of Type I Error in Normal Distribution Curve

Graph 5. The area of Type II Error in Normal Distribution Curve

Graph 6. The area of power

7. Regression

Regression analysis is one of the most frequent statistical methodology conducted in various

areas to find the relationship between independent and dependent variables [36]. It is also

known as a method for estimating parameters and numerical association between variables.

In regression, people are interested to predict one variable respecting to other variables. The

variables that is explaining the other variables are known as explanatory or predictor

(independent) variable. Meanwhile, the variables explained by the predictor are known as

outcome or dependent variables [32]. Coefficient in a regression model can be estimated

using a method called Ordinary Least Square (OLS). The concept behind this method is to

180

minimize the square error between the estimated value and the real parameter of the data

[37]. In general, a regression model can be written as

where :

is dependent variable

are independent variable

are parameters

The parameter estimation can be conducted by considering the data as metrics. Therefore,

the function for the least square method can be noted as

where

The next step is differentiating with respect to in which . This has to be done to ensure that

the value of is minimum.

Hence, the estimator will be

A good regression analysis and model should satisfy the classic assumptions that are

a. The constant variance of residuals. When this assumption is satisfied, the error will

indeed be random and independently distributed.

b. The residual is normally distributed

c. Multicollinearity does not exist [32 , 37]

The assumption checking can be conducted using residual plot (scatterplot of the error) of

residual versus fitted model. The residuals are independent and have constant variance if the

dots in the scatter plot are randomly spreading along the axis. Furthermore, the normality

assumption is satisfied if the dots follow the linear line in the QQ-plot [36, 37].

Graph 7. Scatterplot of regression residuals for assumption checking

The multicollinearity is the condition where there is strong correlation between

independent variables thus causing duplication of similar information in the estimation.

Duplication of information in the estimator causes inaccurate model prediction and

forcasting [27]. VIF is the measure of detecting level of multicollinearity between the

predictors.

Where explains the correlation coefficient between the predictors

Table 5. VIF Criteria

Criteria Intepretation of Multicollinearity

181

VIF=1 (implies no

correlation)

null

1<VIF<5 (correlated) lower level

5VIF< (highly correated) high level

VIF (perfectly correlated) perfect muticollinearity

Research conducted using regression analysis in cancer area can be found in research by

Shafi et all [37].

References

[1] Muthuvel, M., Keerthika, V. and Poobalan, C. P. S. C. (2018). Statistical Analysis in

Cancer Data. https://www.researchgate.net/publication/326710902

[2] Deekshita, S. (2017). Data Science and Cancer: An Approach to the Challenges

Involved International Journal of Computer Science & Engineering Technology (IJCSET)

8(07): 303-307

[3] Pavlopoulou, A., Spandidos, D. A. and Michalopoulos, I. (2015). Human Cancer

Database (Review). Oncology Report 33: 3-18, 2015

[4] American Cancer Society. (2019). Cancer Facts and Figures 2019.

https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/a

nnual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf

[5] International Agency for Research on Cancer (IARC): GLOBOCAN 2008, Cancer

incidence and mortality worldwide. Lyon, France: IARC. 2010.

[6] Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics.

CA Cancer J Clin. 2011; 61: 69-90.

[7] Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM: Estimates of

worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127:

2893-2917.

[8] Baskar, R., Lee, K. A., Yeo. R. and Yeoh, K. W. (2012). Cancer and Radiation

Therapy: Current Advances and Future Directions. International Journal in Medical

Sciences 9(3):193-199. doi: 10.7150/ijms.3635

[9] International Agency for Research on Cancer, World Health Organization (IARC).

(2018). Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6

million cancer deaths in 2018. Lyon, France: IARC.

182

https://www.researchgate.net/publication/326710902
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf

[10] Breslow, N. E. and Day, N. E. (1980). Statistical Methods in Cancer Research. IARC

Scientific Publication 1(32)

[11] Zhu, Y. and Xiong, Y. (2015). Defining Data Science- Beyond the study of the rules

of the natural world as reflected by data.

https://arxiv.org/ftp/arxiv/papers/1501/1501.05039.pdf

[12] Narayanan, R. and Makler, A. (2016). Big Data Analytic and Cancer. MOJ

Proteomics and Bioinformatics 4(2): 00115. DOI: 10.15406/mojpb.2016.04.00115

[13] Coates J, Souhami L, El Naqa I (2016) Big Data Analytics for Prostate

Radiotherapy. Front Oncol 6: 149.

[14] Swift SL, Stojdl DF (2016) Big Data Offers Novel Insights for Oncolytic Virus

Immunotherapy. Viruses 8(2): E45

[15] Yang Y, Dong X, Xie B, Ding N, Chen J, et al. (2015) Databases and web tools for

cancer genomics study. Genomics Proteomics Bioinformatics 13(1): 46-50

[16] Kim ES (2015) The Future of Molecular Medicine: Biomarkers, BATTLEs and Big

Data. Am Soc Clin Oncol Educ Book 22-27

[17] Kottabi, Z. (2012). Statistical Modeling and Analysis of Breast Cancer and

Pancreatic Cancer. Graduate Thesis and Dissertation.

http://scholarcommons.usf.edu/etd/4350

[18] Adamu, P. I., Oguntunde, P. E, and Okagbue, H. I. (2018). Statistical Data Analysis

of Cancer Incidences in Insurgency Affected States in Nigeria. Elsevier Data in Brief 18 p.

2029-2046

[19] Altham, P. (2005). Contingency Table. 10.1002/0470011815.b2a10016.

[20] McHugh, M. (2013). The Chi-square test of independence. Biochemia medica. 23.

143-9. 10.11613/BM.2013.018.

[21] Magalhaes, L. G., Ferreira, L. L. G. and Andricopulo, A. D.(2018). Recent Advances

and Perspectives in Cancer Drug Design. Anais da Academia Brasileira de Ciências 90(1

Suppl. 2): 1233-1250

[22] Kaplan, W. (2004). Priority Medicines for Europe and the World "A Public Health

Approach to Innovation".

https://www.researchgate.net/publication/249995116_Priority_Medicines_for_Europe_a

nd_the_World_A_Public_Health_Approach_to_Innovation_Update_on_the_2004_Backgroun

d_Paper

[23] Das, S. R. (2016). Data Science: Theories, Models, Algorithms, and Analytics.

https://srdas.github.io/Papers/DSA_Book.pdf

183

https://arxiv.org/ftp/arxiv/papers/1501/1501.05039.pdf
https://arxiv.org/ftp/arxiv/papers/1501/1501.05039.pdf
http://scholarcommons.usf.edu/etd/4350
http://scholarcommons.usf.edu/etd/4350
https://www.researchgate.net/publication/249995116_Priority_Medicines_for_Europe_and_the_World_A_Public_Health_Approach_to_Innovation_Update_on_the_2004_Background_Paper
https://www.researchgate.net/publication/249995116_Priority_Medicines_for_Europe_and_the_World_A_Public_Health_Approach_to_Innovation_Update_on_the_2004_Background_Paper
https://www.researchgate.net/publication/249995116_Priority_Medicines_for_Europe_and_the_World_A_Public_Health_Approach_to_Innovation_Update_on_the_2004_Background_Paper
https://www.researchgate.net/publication/249995116_Priority_Medicines_for_Europe_and_the_World_A_Public_Health_Approach_to_Innovation_Update_on_the_2004_Background_Paper
https://srdas.github.io/Papers/DSA_Book.pdf
https://srdas.github.io/Papers/DSA_Book.pdf

[24] Ibnouhsein I, Jankowski S, Neuberger K, Mathelin C. The Big Data Revolution for

Breast Cancer Patients. Eur J Breast Health 2018; 14: 61-62

[25] Reuben, S. H., Milliken, E. L. and Paradis, L. J. (2012). The Future of Cancer

Research: Accelerating Scientific Innovation. President’s Cancer Panel Annual Report

2010-2011. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, National Institutes of

Health National Cancer Institute

[26] Lee, K. A., Yeoh, K.W., and Yeo, R. (2012). Cancer and Radiation Therapy: Current

Advances and Future Directions. International Journal of Medical Science 9(3):193-199.

doi: 10.7150/ijms.3635

[27] Senthilnathan, S. (2019). Usefulness of Correlation Analysis.

https://www.researchgate.net/publication/334308527

[28] Hauke, J. and Kossowski, T. (2011), Comparison of values of Pearson’s and

Spearman’s correlation coefficients on the same sets of data, Questiones Geographicae,

30(2), pp. 87-93 (doi: http://dx.doi.org/10.2478/v10117-011-0021-1).

[29] Gogtay, N. J. and Thatte, U. M. (2017), Principles of correlation Analysis, Journal

of The Association of Physicians of India, 65 (March), pp. 78-81

[30] Lin P, Huang Z (2013) Correlation Analysis Connects Cancer Subtypes. PLoS ONE

8(7): e69747. doi:10.1371/journal.pone.0069747

[31] Ling, B., Chen, L., Liu, Q. and Yang, J. (2014). Gene Expression Correlation for

Cancer Diagnosis: A Pilot Study. BioMed Research International Volume 2014, Article ID

253804, 6 pages http://dx.doi.org/10.1155/2014/253804.

[32] Bland, M. (1995). An Introduction t Medical Statistics. Oxford Medical Publication.

[33] Dunn, O. J. and Clark, V. A. (2009). Basic statistics: a primer for the biomedical

sciences.

http://www.academia.dk/BiologiskAntropologi/Epidemiologi/PDF/Basic_Statistics__A_Pr

imer_for_the_Biomedical_Sciences_4th_Ed.pdf

[34] Massey, A. and Miller, S. J. Test of Hypotheses Using Statistics.

https://web.williams.edu/Mathematics/sjmiller/public_html/BrownClasses/162/Hando

uts/StatsTests04.pdf

[35] Bluman, A. (2009). ELEMENTARY STATISTICS: A STEP BY STEP APPROACH,

SEVENTH EDITION. New York: USA

[36] Mooi, E. (2016). Regression Analysis. DOI: 10.1007/978-3-642-53965-7_7.

https://www.researchgate.net/publication/300403700

184

https://www.researchgate.net/publication/334308527
https://www.researchgate.net/publication/334308527
http://dx.doi.org/10.2478/v10117-011-0021-1
http://dx.doi.org/10.1155/2014/253804
http://www.academia.dk/BiologiskAntropologi/Epidemiologi/PDF/Basic_Statistics__A_Primer_for_the_Biomedical_Sciences_4th_Ed.pdf
http://www.academia.dk/BiologiskAntropologi/Epidemiologi/PDF/Basic_Statistics__A_Primer_for_the_Biomedical_Sciences_4th_Ed.pdf
http://www.academia.dk/BiologiskAntropologi/Epidemiologi/PDF/Basic_Statistics__A_Primer_for_the_Biomedical_Sciences_4th_Ed.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/BrownClasses/162/Handouts/StatsTests04.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/BrownClasses/162/Handouts/StatsTests04.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/BrownClasses/162/Handouts/StatsTests04.pdf
https://www.researchgate.net/publication/300403700
https://www.researchgate.net/publication/300403700

[37] Shafi, M. A. ad Rusiman, M.S. (2016). The use of Linear Statistical Model to

Predict Tumour Size of Colorectal Cancer. Journal of Science and Technology, Vol. 8 No. 2

(2016) p. 1-5

185

