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ABSTRACT 

Copy number events, specifically copy number aberrations, are occurrences that play an important 
part in the development of certain cancer types. However, elucidating the correct type of copy number 
aberration has always been a debated topic with the use of both in silico and in vitro techniques 
having their own disadvantages. Machine learning may prove to be an excellent avenue to explore as 
recent advancements have made it easier to build, study, and apply in the medical field. With it, 
determining a gene's specific copy number type may be possible to elucidate thus allowing better 
understanding for possible target therapy. Using pre-established and validated software, elucidated 
copy number segmentation value was inputted for a regiment of machine learning algorithm. The top 
five models were selected for hyperparameter tuning with cross validation with the end goal of 
Ensembl voting while genomics data was visualized to ensure better clarity for data interpretation. 
Analysis resulted in a clear pipeline for copy number analysis for future data entry to increase the 
trustworthiness of the model. However, future studies can look into the use of next generation 
sequencing data, which can offer more coverage of the genome at the cost of higher computational 
burden. 
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I. INTRODUCTION 
1.1. Background 

There are 33 cancer types of cancer as classified by the TCGA (The Cancer Genome Atlas) 
according to the location and tumor type (National Cancer Institute, 2022). Out of those 33, breast 
cancer or breast invasive carcinoma (BRCA) ranks second among the leading number of cancer 
diagnoses in the world, with lung cancer being the first (Giaquinto et al., 2022). Current research on 
breast cancer centers around discovering therapy medication to remove the tumor, however, these 
medications cause adverse events and in some cases, cause the development of resistance (Grimm, 
2023). Specific studies have documented the importance of the morphology of the tumor alongside 
the variance in treatment methods which caused these adverse events (Masood, 2016). However, with 
advancements in the field of genomics, potential gene mutations and differential expression of key 
genes can be elucidated to discover a more effective and safer therapeutic approach (Bennett et al., 
2022). 

One of the most researched events in cancer is copy number aberrations/alteration (CNAs).  
This event is a common somatic mutation considered as a pathogenic type of copy number variants 
(CNVs) that plays a vital role in tumorigenesis and cancer progression (Mallory et al., 2020; Zeira & 
Raphael, 2020). CNAs are considered a type of somatic mutation as it changes the structure of DNA 
through amplification or deletion causing change in gene expression which leads to tumorigenesis 
(Tan et al., 2022).  

One of the classification of a CNA event is the loss of heterozygosity (LoH) event where a 
particular section of the genome becomes homozygous due to a multitude of reasons such as mitotic 
recombination and loss of chromosome (Naeim et al., 2018). In breast cancer, LoH events can be seen 
in tumor suppressor genes like BRCA1, where Santana dos Santos et al. (2022) found that LoH is a 
significant factor to determine the pathogenicity of a breast cancer tumor.  This finding is further 
supported by other studies such as the ones  done by Lebok et al. (2015) and Deryusheva et al. (2017) 
in which a particular gene  was reported to be particularly susceptible to LoH or like Tsyganov et al. 
(2022) where a certain loci is susceptible. 

Some research has been done on the utilization of machine learning algorithms to analyze 
copy numbers for prediction in the field of cancer, such as the ones by Mu and Wang (2021), Rajpal et 
al. (2023), and Young et al. (2024) among many others.  However, those studies focus on all copy 
number events while specific events are rarely targeted. This can be seen by two researchers that use 
machine learning algorithms that target LoH specifically. In the study by Pyke et al. (2022), they 
aimed to predict LoH in the gene HLA in pan-cancer while the other by Lin et al. (2024) the tumor 
type Pituitary neuroendocrine tumors (pitNET) is the subject for the prediction. However, research 
regarding LoH on breast cancer has not utilized machine learning algorithms yet while breast cancer 
is an important cancer to study with their high occurrence rate. 

To fill in this gap of knowledge, this study aims to create a pipeline that can predict possible 
loss of heterozygosity directly from raw microarray data utilizing deep learning algorithms. This 
model would then be compared against known processing algorithms to determine the effectiveness of 
the algorithm. To achieve an algorithm with high accuracy, data from current tools were used as the 
input data which will be used to train the data. The algorithm was trained for several hundreds of 
iterations using several layers that can be used to find the correlation in the raw data before the weight 
is validated using another dataset altogether to avoid bias. This is done in the hopes that a novel model 
would be created that can show and target specific copy number events. 

10 
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1.2. Objective 
● Create a pipeline suitable to produce copy number data that could be used for 

preclinical study and comparison of samples from Affymetrix SNP 6.0 Human 
microarray data 

● Create a novel machine learning model that could classify copy number events with 
high balanced accuracy 

1.3. Hypothesis 
● It is possible to create a suitable pipeline for sample comparison in preclinical study 
● A novel algorithm can be made from copy number data which offers good  balanced 

accuracy 
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II. LITERATURE REVIEW 
2.1. Cancer 

As defined by the National Cancer Institute (2021), cancer is an uncontrollable growth of 
cells in the body which could metastasize to other cells in a single organism. Cancer as a disease has 
caused millions of fatalities with an increasing number of people being diagnosed every year. This is 
backed by a news article by the World Health Organization/WHO (2024), which reports that 20 
million people were diagnosed and 9.4 million people died. Throughout the years, researchers have 
constantly endeavored in finding a cure to the disease, leading to many new discoveries and findings.. 
These findings led to newer definitions of cancer such as one stated in  a review article by Brown et 
al. (2023), proposed a new definition of cancer which is “Cancer is a disease of uncontrolled 
proliferation by transformed cells subject to evolution by natural selection”. 

Using  this definition, it can be seen that there are many causes of cancer progression and 
initiation. Those causes have been categorized and grouped into what is known as the hallmarks of 
cancer in a review paper by Hanahan & Weinberg (2000). Those hallmarks are sustaining proliferative 
signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, 
inducing/accessing vasculature, activating invasion and metastasis. This was later updated in 2011 and 
2022 in which the current hallmarks were updated  as seen in Figure 1 (Hanahan, 2022). In the end 
however, cancer hallmarks work by mainly affecting the molecular pathway of tumor suppressor and 
oncogenes (Ostroverkhova et al., 2023). 

 
Figure 1. Illustration on the current hallmarks of cancer taken from “Hallmarks of Cancer: New Dimension” by 

Hanahan (2022). 
 

2.2. Breast Cancer 
As mentioned before, breast cancer is one of the many different types of cancer that has been 

categorized by the TCGA project. Like in most other types of cancer, histopathological analysis of 
breast cancer has always been considered as the best way to diagnose and categorize the type of breast 
cancer found in the patient (Zeiser et al., 2021). The histopathological type of the cancerous tumor is a 
critical criteria in determining diagnostic and prognostic evaluation of patients which is why WHO’s 
blue book constantly updates the classification according to current development. As of the writing of 
this manuscript in 2024, five iterations/editions of the blue book have been released where the updates 
on histopathology can be seen fully in the review article by Cserni (2020). Although there are many 
histopathological types, most are exceedingly rare with 75% of breast cancer diagnoses being Invasive 
Ductal Carcinoma (IDC) and ∼10% being Invasive Lobular Carcinoma (ILC) (Yoon et al., 2023; Liu 
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et al., 2024). Due to being the most common type of breast cancer, the TCGA code for is called breast 
invasive carcinoma rather than any of the other histological name classification. 

Aside from diagnosis methods through direct investigation of the histological pattern of the 
tumor, breast cancer also has tests specific to it such as imaging through mammography and 
molecular subtyping. Mammography is the practice of detecting the presence of tumor cells in 
patients who have shown no outwards/detectable symptoms using low-energy x-rays to differentiate 
fatty and fibroglandular breast tissue according to their absorbance rate (din et al., 2022; Ritse, 2023). 
Molecular subtyping on the other hand, is a series of  tests using biopsy/sample from the patient to 
verify the presence of hormone receptors estrogen (ER), progesterone (PR), and human epidermal 
growth factor 2 (HER2) (Orrantia-Borunda et al., 2022). The resulting classification of both analyses 
is different as mammography is used to determine the malignancy of the tumor while molecular 
subtyping is used to determine what type of chemotherapy drug is effective.  The end result for both is 
also different as early detection from mammography can be used as evidence for tumor resection. 
Meanwhile, molecular subtyping requires further support from other tests before a suitable therapy 
plan can be made. 

However, not all breast cancer subtypes are easily handled using targeted therapy as multiple 
factors play a part in allowing medical specialists to design the most suited therapy plan for the 
patient. As can be seen in Figure 2, breast cancer can be classified using the presence of the hormone 
receptor. Different subtypes of breast cancer require their own specific treatment according to their 
molecular subtype with some having better prognosis than others (Charan et al., 2020). The subtype 
with the poorest prognosis is the triple negative breast cancer (TNBC) or sometimes referred to as the 
basal subtype. The TNBC subtype, is the most aggressive subtype where none of the previously 
mentioned hormone receptors are present which means that detection can only be done using imaging 
and Immunohistochemistry (Dass et al., 2021).  

 
Figure 2. Classification of breast cancer subtypes. Take from Charan et al., (2020) Titled “Molecular and 

Cellular Factors Associated with Racial Disparity in Breast Cancer”.  
 

With the presence of hard-to-treat variants, research in breast cancer needs to be intensified as 
some types require more personalized treatment compared to others. This is where the updated 
hallmarks of cancer play a part as they have confirmed that genetics do play an important role in 
tumorigenesis. As such, efforts have been made to study the genomic landscape, leading to results 
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such as the discovery and importance of BRCA 1 and 2, crucial tumor suppressor genes with direct 
causative effect towards the development of breast cancer (Mehrgou & Akouchekian, 2016). Aside 
from those, genes such as TP53 CDH1, PTEN/STK11, and CHEK2 have been extensively researched 
for their potential as biomarkers or treatment targets (Walsh et al., 2017). More newly discovered 
genes such as CACNG4, PKMYT1, EPYC, and CHRNA6 have been proposed as potential prognosis 
biomarkers or as therapeutic targets by studies such as one done by Golestan et al. (2024). However, 
there is still a need for more accurate and  specific markers that can assist in each individual's case.  

.   
2.3. Chromosomal Instability: Copy Number alterations 

As it eventually comes back to the human genome, exploration of the genomic ecosystem and 
how the molecular function is affected becomes a particularly interesting and fascinating focus of 
study. Looking back at Figure 1, one of the newly added is “Genomic Instability & Mutation” which 
indicates that instability of gene expression and mutations in the genomic sequence  would lead to 
progression of cancer. These genomic errors induce changes in the activity of certain genes and their 
downstream products thus causing irregular levels of pathway activity. This change of expression can 
be attributed to alteration events such as sequence mutation or copy number aberrations, errors which 
number at around 3000 base pair mutations alongside a hundred or so copy number changes in a 
cancer genome when compared to a normal sample (Macconaill & Garraway, 2010). 

While mutations and copy numbers might seem similar, a stark difference lies in their 
heredity. Mutations can be passed down and may happen to be common in a population while copy 
numbers are unique to every individual with the numerous variations having unknown effects. A 
difference can also be found in that, as mentioned before, it is a somatic type of mutation where it will 
occur only after conception while normal mutation could be somatic or germline (Oota, 2020). What 
is known is that there are errors found in the human genome with each and every event, be it deletion 
or duplication, contributing to evolutionary traits, disease and/or microbiome interaction (Pös et al., 
2021).  

These unique changes result in different expression levels in genes on an individual level, but 
copy numbers in larger quantities results in the development of aneuploidy. Aneuploidy is a 
commonly found condition in cancer in which cells contain an abnormal amount of chromosomes. 
However, in the context of cancer, aneuploidy can also be used to describe the loss of the longer arm 
of a chromosome. The state of aneuploidy grants similar effects to that of continuous genetic 
mutations in cancer, namely increasing genetic variety. Variations in copy numbers lead to differing 
responses towards external stimuli and add another layer on the genetic diversity of tumors. Those 
variations include deletion, inversion or duplication of the specific allele as can be seen in Figure 3 . 
This diversity promotes cancer progression while also assisting in cancer immune evasion (Ben-David 
& Amon, 2019, Lakhani et al., 2023).  

14 
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Figure 3. Variations of Copy Number Events as Described by Chirwani & Campbell, (2020)  in “Genetics for 

paediatric radiologists”.  
 

2.3.1. Copy Number in Breast Cancer 
As mentioned before, aneuploidy plays an important part in cancer progression. As far back 

as 2010, a paper by Navin et al., (2010) already knew that aneuploidy in breast cancer is almost 
certain with half of breast cancer patients showing signs of aneuploidy. The common nature of 
aneuploidy in breast cancer is supported by newer studies such as one done by Pfister et al., (2018) 
and Lakhani et al. (2024). Aside from Aneuploidy, another state caused by chromosomal instability is 
the variation of copy numbers. Copy number variations or CNV are losses or gains of genomic 
fragments with a length of 50 bp up to several mbs, this is adjusted from the previous classification of 
only being around 1kb (Pfister et al., 2018). CNVs are common alterations and can be found in most 
parts of the human genome with various effects from no effect at all to being the direct cause of 
cancer development and progression (Murakami et al., 2020). A benign example of CNV is the 
variation in AMY1 gene which is more highly expressed in populations that have a higher amount of 
starch in their diet.On the other hand, an example of a more lethal CNV is the deletion of the 
BRCA1/2 Gene which directly contributes to the development of breast cancer. Other CNVs common 
in breast cancer are amplifications of TERT or CDK4, and deletions on chromosomes 17, 19, and 20 
(Sablin et al., 2024; Mirzaei & Petreaca, 2022; Hakkaart et al., 2022).  

 
2.3.2. Loss of Heterozygosity 

The aberrations and increase in genomic variance caused by factors such as aneuploidy and 
CNV would lead to the occurrence of loss of heterozygosity events. Loss of heterozygosity or LoH is 
an event where a heterozygous pair of a gene or chromosome becomes homozygous. This is generally 
caused by failed separation during mitosis, error in homologous recombination or just deletion in a 
segment of a chromosome (Chambliss & Marzinke, 2020). LoH is often associated with the 
suppression of tumor suppressor genes and the two hit models for cancer development. The two hit 
model is one where a heterozygous tumor suppressor code with one being deactivated and the other 
activated becomes a homozygous pair and deactivates the tumor suppressor gene (Pös et al., 2021). In 
the context of breast cancer, a germline mutation in 1 copy of the BRCA1/2 genes would be 
vulnerable to somatic LOH in the corresponding pair, leading to inactivation of the gene & initiation 
of tumor growth (Kim & Suyama, 2022). LoH also affects the behaviour and susceptibility of the 
tumor. Certain genes confer resistance or modulate treatment sensitivity meaning LoH in these genes 
would affect how the tumor reacts to any administered medications. LoH would also affect the 
behaviour of a tumor such as the correlation between LoH and aggressiveness in PitNET and immune 
evasion through suppression of HLA expression (Yang et al.,2022; Lin et al., 2024; Santos et al., 
2022). 
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2.4. Overview of Machine Learning 

 Artificial intelligence does not have a specified term, but the most commonly accepted one is 
the utilization of computers to imitate human intelligence with a branch of the studied called machine 
learning where the aim is to utilize algorithms for analyzing large amounts of data (França et al., 
2021; Sheikh et al., 2023). The increase in technology allows the rapid advancement in machine 
learning. Whereas before the current iteration of machine learning was implemented, they were just 
basic algorithms that were made to solve simple basic problems based on predetermined results. This 
then evolved to what we now know with it being used in basic everyday tasks such as image 
recognition to something very complex such as predicting molecular structures of proteins. The aim of 
AI is now to be able to do the work of humans more efficiently and in the hopes that it will perform 
better than us. 

 Over the years, a lot of new algorithms are developed or old algorithms are being improved 
upon thus allowing there to be a lot of algorithms to choose from. Each algorithm fits a certain type of 
work. Because of the many applications of different machine learning and AI models, the way they 
are implemented is also infinite in nature as every possible problem could be solved using AI. In 
everyday life, the use of AI  has now grown exponentially with many uses in real life. However, the 
main four categories: supervised; unsupervised; semi-supervised; and reinforcement learning, have 
their application where they are more suited (Sarker, 2021). 

 
2.4.1. Supervised Learning 

In how they are processed, machine learning algorithms are divided into four 
major categories which are mentioned above. According to Figure 4 by (Sarker, 2021), 
the major 3 are: supervised; unsupervised; and reinforcement learning. Seeing as 
Semi-supervised is not really used, it will not be discussed. But in general it acts as an 
intermediary between supervised and unsupervised. 

 

 
Figure 4. Representation popular machine learning category from 2015–2020 by Sarker (2021). 

 
As for supervised and unsupervised, the difference between them is that unsupervised 

learning does not need a guide and allows the algorithm to make its own conclusion 
(Alloghani et al., 2020). For supervised learning, the model is guided by using labels or 
identifiers to get the result the human wants. In terms of complexity, unsupervised learning is 
very complex; however, it is oftentimes not very accurate and may give unexpected results 
which may cause complications in highly sensitive matter (Naeem et al., 2023). Meanwhile, 
reinforced learning is a type of machine learning where the program trains in an unknown, 
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ever changing, environment and is allowed to learn through trial and error (Naeem et al., 
2020).  

 
Figure 5. Representation of how supervised learning is done by Kanevsky et al., (2016)  

 
In general, for highly complex aim and data, unsupervised learning is generally 

recommended while the aim for supervised learning is to get something as accurate as 
possible. Building a complex model using unsupervised learning takes time and 
computational power as a large number of data is needed (Bantan et al. 2020). 
Meanwhile, the ever changing environment for reinforced learning is very hard to apply 
for some data, especially with some boundaries that are not able to be translated to code 
(Ding & Dong, 2020). This is especially true if the sample data is very small in the 
beginning. As such, it is oftentimes a good idea to first propose a supervised model as a 
baseline for further studies. This would also allow more comprehensive data filtering to 
filter out bad quality data first so that no time would be wasted training and testing the 
model. The data could then be processed or trained according to the need, but supervised 
learning itself is divided into 2 major types. The first is classification, which is using class 
labels or features as an input and then finding the distinct value which allows 
categorization of class (Kornyo et al., 2023). The second is called regression where the 
algorithm creates a model to fit several variables together using a linear line (or plane) to 
then produce an equation to a value of question (Hox & Maas, 2005). The use case of 
regression is oftentimes to predict a value with high accuracy and certainty. However, the 
difficulty comes in tuning and then finding which algorithm will work best with, 
oftentimes, strict input necessities. This is different compared to categorical algorithms 
which can accommodate all data types and is more versatile, but with the trade off of not 
being able to do precise things. 

 
2.4.2. Machine Learning in Breast Cancer Data 

Machine learning and AI in itself for medical related work recently received 
public attention with the emergence of COVID 19. This new boom brings news to the 
development of medicine, especially in the terms of imaging. In particular for breast 
cancer, one of the ways for testing is for mammography. Recently, there have been efforts 
by Kyono et al., (2020); Prodan et al., (2023); and Hanis et al., (2022) to try using 
machine learning imaging for easier analysis of mammography data. However, 
mammography is mainly used for diagnosis and not prognosis (Reeves & Kaufman, 
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2024). As such, it is important for other methods to be explored, particularly in terms of 
predictive and prognosis testing which can be done through analysis of genes and then 
utilizing personalized medicine. 

In the case of personalized medication, what is needed is high accuracy compared 
to complexity as the data is highly sensitive. As mentioned before, large amounts of data 
needed for unsupervised training would take a lot of time. This wasted time can be used 
to train multiple supervised machine learning models. This is why a lot of publications on 
breast cancer use supervised machine learning such as Mustapha et al., (2020) which 
trains Wisconsin data using a variety of supervised machine learning method; while there 
is also the use of multi omics data of breast cancer to predict therapy response by Sammut 
et al., (2023). This shows the efforts done to further breast cancer prognosis and 
prediction for future cases. 

2.4.3. Data Stratification 

Data stratification is something that has to be dealt with in the case of machine 
learning for biological data as generally, the data is imbalanced. There are a lot of ways to 
handle this, but the main method is either under sampling by removing majority data or 
over sampling by adding minority data (Gnip et al., 2021).  By doing this, the data would 
not have a huge difference in each category's sample. It is also the most recommended 
way to transform the data so that overfitting i.e testing data that is too similar to the 
oneness being used to create the machine learning model.  
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III. MATERIALS & METHODS 
3.1. Pipeline Overview 

The in-silico analysis uses the system provided by the host institution (Taipei medical 
University, Professor Chih-Yang Wang’s lab) with the specifications of i9-11900 and 128 GB of 
DDR4 ram. The OS used was the Linux distro Ubuntu 22.04 LTS, which processed the Affymetrix 
CEL format files using Affymetrix Power Tools 1.19 (APT) and PennCNV through the terminal 
(Wang et al., 2007; Diskin et al., 2008; Wang et al., 2008; Thermo Fisher Scientific., 2016; Qiao et al., 
2023). This was followed with R coding using the latest version of 4.4.1 for running the ASCAT 3.1.3 
and CINdex 1.32 package alongside all dependencies that came with it (Van Loo et al., 2010; Song et 
al., 2017). However, for machine learning prediction, a windows system was used to facilitate the 
Python environment through the use of Anaconda Navigator, specifically the Jupyter Notebook 
(Anaconda Software Distribution, 2024). 

A step-by-step overview can be seen in Figure 6. In general, data is collected from Gene 
Expression Omnibus (GEO) followed by translation of raw microarray read in LogR Ratio (LRR) and 
Beta-Allele Frequency (BAF) using the recommended steps in 
(https://penncnv.openbioinformatics.org/en/latest/user-guide/affy/). This is followed by ASCAT 
segmentation which is followed up by visualization in CINdex and prediction using machine learning. 

 
Figure 6. Overview of the project’s pipeline 

 
3.2. Data Collection 

Data was collected from the GEO accession GSE87048  
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87048) which were submitted in 17th of 
September 2016 by Romero-Cordoba et al. (2021). Data from GSE87048 contains 100 varying breast 
cancer data from mexican-Hispanic population with both tumor and peripheral blood samples being 
arrayed in Affymetrix Genome-Wide Human SNP 6.0 Array. Clinical data, meanwhile, can be found 
in the paper attached to the GSE entry. 

In short, the sample (Tumor and peripheral blood) was extracted using QIAamp DNA Blood 
Maxi Kit (Qiagen, Valencia, CA). Each sample was digested using NspI and StyI enzymes (New 
England Biolabs), followed by T4 DNA ligation (New England Biolabs) and amplification. The 
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sample was then purified using magnetic beads (Agencourt) before labeling with biotin with the final 
step being hybridization to the array. 

  
3.3. CEL Data Cleaning and Preprocessing 

Data cleaning and preprocessing was performed using APT and PennCNV using the 
conditions mentioned above. Raw data from GEO was gathered as mentioned in section 3.2 in linux. 
Compressed CEL files were first decompressed followed by the execution of the penn-affy protocol 
provided by PennCNV. CEL was first preprocessed using an algorithm provided by APT to generate 
genotyping files and quantile normalization that will later be used to create the LRR and BAF file 
(Pitea et al., 2020). This was done using the APT tool’s apt-probeset-genotype and 
apt-probeset-summarize which gives a birdseed and summary result respectively. The birdseed file 
will be used later while it will be the input of PennCNV to calculate the LRR and BAF values. 

 
3.4. ASCAT  

Cleaned data, as described above, will be used as input for ASCAT. Importing was done using 
the basic R command to import CSV files containing the needed data to the environment. The data 
was then processed according to the guidelines directed by the author with some modifications. Data 
type conversion was done to GenomicRanges followed by normalization by the in-house ASCAT 
algorithm followed by segmentation of the data according to the adjacent normal tumor data. After 
that, the main ASCAT algorithm was run to produce the copy number variant data as well as the 
ploidy of the sample. For a full view of the code, please visit the GitHub repository 
(https://github.com/Darkam1101/Copy_number). 

Classification of CNV was done based on the traditional assumptions that the sample has a 
diploid genome (Gardina et al., 2008). They are classified into 4 general categories which are: normal, 
loss, gain, and LoH. For normal, nMajor and nMinor must total to 1 and 1 under the assumption that 
the total copy number is equal. Loss is categorized as 1 and 0 or 0 and 0 where all n value is gone . 
Gain is where nMajor and nMinor is more than 1 while LoH is when nMinor = 0 and nMajor > 0. 

 
3.5. CINdex 

CINdex was run in the same environment as ASCAT. The CINdex package was first imported 
from Bioconducter before ASCAT segmentation output was converted into GenomicRanges data type. 
Preparation was also done by importing reference data for the Human genome using the assembly 
HG19 which includes cytoband location, gene annotation, reference genome,  and clinical data using 
the sub-types. The package was then run according to the author's vignette, please refer to the 
previously given GitHub repository for code used. 

 
3.6. Machine Learning 

Raw Segmentation data from ASCAT was concatenated for each of the samples and then 
imported to python. In total, only 73 samples out of 100 were used due to missing clinical data. Each 
data was then processed using one hot encoding while missing data followed by transformation of 
Boolean data to integers. Testing was then done using a multitude of algorithms through the use of the 
AutoML package LazyPredict (https://github.com/shankarpandala/lazypredict). The results of the first 
round of testing were then trained using the top 5 algorithm while partly modifying LazyPredicts 
preprocessing for the same results. Each algorithm was then visualized using a confusion matrix for 
better clarity of their performance.  After that, data imbalance was fixed by applying the SMOTE 
algorithm and two other variants i.e SMOTE+ENN and SMOTE+Tomek. The same process was 
repeated using the best performing balancer algorithm and the top 5 models based on the F1 score 
were trained manually with hyper-parameter tuning before Ensemble voting was applied. The scoring 
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was then visualized using a confusion matrix to get a better view on how accurate each model is 
(balanced accuracy >0.8). For further information regarding the code, please see the GitHub 
repository given before.  
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IV. RESULTS AND DISCUSSION 
4.1. Exploration of the Data Set 

The data set used from Romero-Cordoba et al. (2021). In total, There is 100 data that is 
Inputted into ASCAT. The distribution of the cancer types before data cleaning can be seen in Figure 
7A while after it has been cleaned by removing data without clinical data can be seen in Figure 7B. In 
total, around 2500 or so data points were deleted with data from the segmentation data. Both Figures 
7A and B are consistent with past research where both luminal subtypes are common while basal is 
the least common as they have the highest and lowest prognosis, respectively. This indicates that the 
distribution and resulting data would have a slight bias towards luminal A samples, particularly in the 
machine learning parts.  

A) 

 

B) 

Figure 7. A) Distribution of subtypes before data cleaning. B) Distribution of data after it has been cleaned 

 
4.2. Copy Number Events from ASCAT 

 
Figure 8. Distribution of CNV events after being processed through ASCAT and classified according to GISTIC 

classification. 
 

The ASCAT algorithm is an algorithm that can calculate the ploidy and CNV for each sample 
that is inputted into the algorithm. The data is derived from the LogR and BAF data generated 
according to the method explained above. LogR and BAF data that is inputted can actually be used for 
other algorithms that can also predict CNV such as OncoSNP, GenoCNA, and GISTIC (Pitea et al., 
2018). Those algorithms have their own specific way of classifying CNV events. But in general, 
ASCAT is the one used the most due to its ability to detect LoH events, aberrant tumor cell fraction, 
copy neutral events, and ploidy with it being the most accepted way to analyze copy number data 
(Favero et al., 2015; Shahrouzi et al., 2024).  
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During data calling and processing, ASCAT data can be visualized in each step of the process 
as the algorithm is not a continuous process, but multiple codes that need to be run. The results from 
ASCAT come in two forms, visualized plots and segmentation data in the form of a .txt file. The 
segmentation was plotted manually in python as seen in Figure 8 where the classification was done as 
described in the method section 3. 4.  

 Meanwhile, an example of the visualized results of ASCAT can be seen in Figure 9 where 
luminal A subtype tumor and non-aberrant tumor sample can be seen in Figure 9. In the figures, it is 
possible to compare one instance of an aberrant sample with a non-aberrant tumor of the same 
subtype. In Figure 9A, the figure showed the segmentation data before and after it was rounded which 
snows where specifically the CNV happens. However, using the raw signaling  from LRR and BAF 
value in Figure 9B is possible albeit complicated. This is however incomplete without the sunrise plot 
in Figure 9C as in this plot, it shows the probability of where the ploidy is with the darker the color 
representing higher accuracy. 

 From comparison in Figure 9A, raw segmentation data was rounded up by the algorithm to 
make a better graph that when compared shows the condition of the chromosomes. In this case, we 
can see some deletion/loss events and amplification/gain events. Gain events are seen when the total 
reading of the chart is not equal to the ploidy value while loss events are the reverse. In this case, the 
event mainly covers chromosome 1, 6, 8, minor parts in 14, 18, and 22. This correlates with the 
possibility that some tumor suppressor gene is likely to be found in chromosomes 6, 8, 18, and 22.   

A)

 

 

 

B)
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C) 

 

 

 

Figure 9. Visualization of ASCAT from luminal A sample/sample T194 (left) and non-aberrant luminal A 
sample/sample T184 (right): A) Segmentation data from Raw (up) and rounded (down) ; B) Data of tumor (up) 

and normal/germline (down); and C) Sunrise plot of the probability of the ploidy 
An example is the whole deletion in chromosome 22 where the tumor suppressor CHK2 is 

found. As it is a tumor suppressor, loss of one of the alleles as in LoH of CHK2 would affect many 
downstream activation pathways. According to Figure 10 by Boonen et al., (2022) would affect 
several other tumor suppressor genes in breast cancer, thus allowing tumorigenesis by causing several 
things. One of the pathways is BRCA1 where it is connected to DNA repair. According to Li et al., 
(2020), the pathway is the one responsible for maintaining the stability of the genome during repair. If 
they are affected, possible CNV may occur again, thus lowering prognosis. 

 

 
Figure 10. Downstream pathway of CHK2 by Boonen et al., (2022) in “CHEK2 variants: linking functional 

impact to cancer risk” 
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Aside from luminal A, there are other types of subtypes being analyzed as mentioned before. 
The result of the segmentation can be seen in Figure 11. From what can be seen HER2 and basal have 
the most subtypes. However, more CNV can be seen in the HER2 subtypes while ploidy in basal is a 
lot more which could affect the expression of the whole genome. But it should be noted that, copy 
number affects everyone differently as they are catered towards individuals. Only general conclusions 
can be made as each sample’s analysis is only relevant to that particular sample due to the nature of 
CNV itself. 

A)

 

B) 

 

C)

 

D)

 

Figure 11.  Visualization of CNV data from sample A) T186, subtype luminal B; B) T193, subtype HER2; 
C) T174, subtype basal; D)T29, subtype normal-like. 

As seen above, the use of copy number is very relevant in predicting and knowing how the 
genome might be affected at that particular time. This offers prognostic value and if early enough 
done, might be useful for prediction of breast cancer pathogenicity. 

 
4.3. Chromosomal Instability Visualization from CINdex 

After ASCAT was done, the data produced was trained for machine learning and CINdex. 
CINdex is a tool found in anaconda to visualize the chromosomal instability from any copy number 
segmentation data. The instability of the chromosome can be directly tied to and is the cause of 
several diseases. From CINdex, it is possible to see which particular chromosome and their particular 
region is highly unstable. The software produces visualization for copy number segmentation using 
their own proprietary classification of copy number events. However, the results for normalized value 
is null and for each different cut off is the same. This in turn affected the visualization for the 
cytoband of each chromosome where all normalized plots are empty or only some being hard to 
interpret in the cytoband level. The cause of the missing value in the figure is most likely caused by 
the translation data done by APT where half of the probe’s signals were deleted. This caused only 
some parts of the genome to be analyzed by ASCAT. 
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A)

 

B)

 
C) 

 
Figure 12.  Visualization of CNV using CINdex across the genome with threshold (gain = 2.1 and loss = 1.9). 

A) unnormalized amplification events; B) unnormalized deletion event; C) unnormalized sum event. 

As mentioned before, the results for normalized values are blank. However, it is possible to 
interpret them using the unnormalized value as seen in Figure 12 . From what can be seen, most copy 
number events are present in chromosome 11 and 8 with chromosome 17 being a close third. This 
gain result of chromosome 8 and 11, especially in ER+ subtypes (luminal A and B)  is consistent with 
previous studies as written in a literature review by Shahrouzi et al., (2024). Unfortunately, noise in 
deletion events leads to bias in interpretation which is also backed up by the results of ASCAT as seen 
in Figure 8. One of the possible reasons for this is because while the data from ASCAt was 
categorized using GISTIC’s categorization, CINdex has their own way of categorizing the events. 

4.4. Machine learning Training 
The segmentation data previously obtained from ASCAT then was imported into the python 

environment. The segmentation data used was the raw segmentation as the values of the copy number 
were not rounded. For ASCAT and CINdex, as mentioned before, there was no data that was excluded 
from the analysis. Meanwhile for machine learning, the rows that were cleaned first were the ones that 
didn’t have any clinical data according to the clinical data file as given by Romero-Cordoba et al. 
(2021) and also had more than 5 features of missing data (Supplementary Figure 5). The sample ID 
removed total 35, with the exact ID being: 

26 



FR-i3L-3.0.4 Rev.2 

GSM2319837, GSM2319839, GSM2319841, GSM2319846, GSM2319847, 
GSM2319852, GSM2319855, GSM2319862, GSM2319863, GSM2319865, 
GSM2319868, GSM2319873, GSM2319876, GSM2319883, GSM2319890, 
GSM2319891, GSM2319892, GSM2319896, GSM2319913, GSM2319915, 
GSM2319916, GSM2319918, GSM2319919, GSM2319920, GSM2319921, 
GSM2319931, GSM2319934, GSM2319836, GSM2319843, GSM2319845, 
GSM2319851,    GSM2319860,     GSM2319899,      GSM2319905,    GSM2319935  

A)

 

B) 

 

Figure 13. A) Result of decision tree for benchmarking; B) Feature importance analysis of the decision tree 
After data cleaning and imputation, training was performed using the basic decision tree to 

get a benchmark on the data. The result is 100% accuracy as depicted in Figure 13A. This was due to 
the presence of the 'nAraw' and 'nBraw'. This was confirmed  using the feature importance test as seen 
in Figure 13B which would indicate that the data was not learning at all. This is unfortunately not 
what is needed which means that the features need to be removed. 

 
Figure 14. Distribution of data points used for machine learning in: A) pre-stratification of data (7057); B) 

SMOTE data stratification (11992); C) SMOTE+TOMEK data stratification (10668); D) SMOTE+ENN data 
stratification (5379). 
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As can be seen in Figure 14 the data was imbalanced as was common for genomic data, it is 
imperative that the data be stratified for machine learning.Although it is possible to generate the data 
using machine learning, it is not recommended to do so as creation of genomic data without strict 
controls would actually introduce more bias and interfere with analysis. Despite this, data generation 
will have to be done in order to balance the data and to replace overlapping data using. While it is 
possible to use under-sampling (i.e. removing data) if missing data is found, pre-established methods 
since Batista et al., (2004), support that data-generation as the more appropriate alternative. To 
achieve this, data generation using SMOTE and its derivative  was used to handle this (Pradipta et al., 
2021). All variations of the most popular SMOTE were used, which were Tomek link/Tomek and 
ENN. Tomek links and ENN are both additions to SMOTE where after data was added, under 
sampling was done. In Tomek, it is done by removing overlapping samples while ENN removes 
samples that are thought to be noise (Sasada et al., 2020).  
 

Table 1. Machine learning training using LazyPredict after removing ‘nAraw’ and ‘nBraw’ features. 

 
Model 

F1 Score 

No 
Transformation 

SMOTE SMOTE 
+TOMEK 

SMOTE+ENN 

ExtraTreesClassifier 0.68 0.50 0.75 0.95 

RandomForestClassifier 0.69 0.54 0.76 0.94 

LGBMClassifier 0.71 0.62 0.77 0.94 

XGBClassifier 0.72 0.61 0.78 0.93 

ExtraTreeClassifier 0.62 0.51 0.69 0.91 

BaggingClassifier 0.71 0.57 0.76 0.90 

DecisionTreeClassifier 0.66 0.55 0.73 0.90 

LabelSpreading 0.65 0.48 0.68 0.88 

LabelPropagation 0.65 0.47 0.68 0.88 

SVC 0.68 0.56 0.71 0.86 

KNeighborsClassifier 0.65 0.56 0.69 0.84 

NuSVC 0.67 0.53 0.68 0.83 

LogisticRegression 0.59 0.55 0.63 0.76 

LinearSVC 0.58 0.54 0.61 0.75 

CalibratedClassifierCV 0.58 0.54 0.62 0.75 

LinearDiscriminantAnaly
sis 

0.58 0.56 0.61 0.74 
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RidgeClassifier 0.58 0.54 0.61 0.73 

RidgeClassifierCV 0.58 0.54 0.62 0.73 

SGDClassifier 0.55 0.52 0.58 0.72 

Perceptron 0.50 0.47 0.51 0.69 

PassiveAggressiveClassif
ier 

0.48 0.46 0.51 0.67 

AdaBoostClassifier 0.56 0.53 0.58 0.63 

QuadraticDiscriminantA
nalysis 

0.33 0.42 0.33 0.49 

NearestCentroid 0.46 0.43 0.45 0.57 

BernoulliNB 0.45 0.45 0.44 0.55 

GaussianNB 0.41 0.35 0.34 0.53 

DummyClassifier 0.10 0.26 0.10 0.31 

 
As SMOTE+ENN showed the best results, the top 5 models based on F1 score in Figure 15 

were then passed through hyperparameter tuning for better results. The F1 score symbolized the mean 
value between precision and recall ability of the algorithm (Hicks et al., 2022). The use of it in this 
case was because with better precision and recall, the features predicted are relevant features and the 
model could minimize false predictions. The results for each model after hyper parameter tuning can 
be seen in Figure 16. The best model performer according to the figure is random forest with 0.97 
after training with 5 times cross validation. This is followed by extra tree, light GBM, XGB, and 
finally decision tree. The presence of the decision tree at the bottom is not surprising, but what is 
surprising is that it made the top 5. 

 
Figure 15. F1 score ranking from LazyPredict 

 
Comparing the results from LazyPredict (Supplementary Tables 4–7) with the results from 

Figure 14 a significant improvement can be seen in some cases. This is consistent with what Talaei 
Khoei & Kaabouch, (2023) said with hyper parameter tuning. 
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Figure 16. Confusion matrices for the algorithm: A) decision tree; B) random forest; C) light GBM; D) XGB; 

and E) Extra tree  
In terms of complexity, the decision tree is one of the more basic algorithms that can be used, 

However, despite its simplicity, it is robust enough that it can handle a variety of tasks (Mienye & 
Jere, 2024). Unfortunately, because of this trait, it is not expected that the decision tree will be near 
the top of the list (Table 1). The others however, are not that surprising as the Ensemble algorithm is 
known to be one of the most powerful collections of algorithms. Ensembl itself uses already defined 
algorithms and builds upon it, thereby perfecting the model as can be seen in the figure below (Kumar 
et al., 2022). Whereas light GBM, XGB and random forest are built upon decision trees, the voting 
algorithm further enhances all of them by taking input from every single algorithm thus making it 
having the best result (Figure 17). This is the reason why Ensemble was used instead of deep 
learning, as deep learning has a steep learning curve and the time trying to implement it may not be 
worth the effort (Mohammed & Kora, 2023). 

 
Figure 17. Distribution of balanced accuracy during cross validation after voting training: A) decision tree; B) 

random forest; C) light GBM; D) XGB; and E) Extra tree  
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4.5. Limitations 
As with many other studies, there were limitations that hinder the project's results. First was 

regarding the ASCAT segmentation. It should be noted that the segmentation data for ASCAT starts 
not from the 0 bp in every chromosome which, unfortunately, the data showed is not the whole 
genome, even though it should be. The reason is that the copy number probe which makes up half of 
the SNP 6.0 Human DNA array was deleted by APT. This is consistent with reports by Dennis et al., 
(2020), where CNV probe calls must be made from overlapping probes to ensure accuracy. Because 
of that, it could be assumed that APT removed those due to covering specific regions that may 
introduce bias downstream. There is also the fact that, as with past research and standard practices, 
that classification of copy number is done with the assumption that the genome is diploid. In cases 
where ploidy is more than 2, manual re-classification must be done to avoid wrong classification as 
seen in Masood et al. (2024). This unfortunately was not done to inconclusive support on how to 
define aneuploidy copy number with several researchers debating what is the best way to classify 
aneuploid CNV. 

Limitations can also be found with CINdex. While the use and existence of such a package is 
extremely helpful in viewing and comparing data, the long processing time will present a problem 
when implementing it in real-life. Aside from that, the 3 different levels of threshold which are gain = 
2.1 and loss = 1.9; gain = 2.25 and loss = 1.75; and gain = 2.5 and loss = 1.5 produces raw and 
normalized values that are then plotted. However, the plot for raw values are the same while for 
normalized values, they are blank (Appendix 1–3). The error in blank results also could be caused by 
the large coverage by ASCAT and not small regions that may be expected by the algorithms. 
However, a possible replacement was developed by Oza et al., (2023) that also calculates CIN, but is 
more focused on specific CIN which does not allow the visualization of the whole genome like CIN. 

In machine learning, limitations faced were the data imbalance of CNV variants and the 
classification of the CNV types. Imbalance data was solved using SMOTE+ENN as described above 
in the result and discussion. But, with genomic data, it is generally not recommended to generate 
pseudo-data and has been a controversial topic even though guidelines have been established (Lazic et 
al., 2020). Due to this, it is very hard to work with machine learning for copy numbers as 65 sources is 
not enough for good prediction. However, more samples may have the ability to ensure better results 
and better validity of the model. For CNV classification, there are many different ways of classifying 
it. One is using the GISTIC way with: 

“-2 for homozygous loss (nMinor + nMajor = 0), –1 for hemizygous loss (nMinor + nMajor = 
1), 0 for normal (nMinor + nMajor = 2), 1 for three copies (nMinor + nMajor = 3), and 2 for more 
than three copies (nMinor + nMajor > 3)” (Castro-Mondragon et al., 2022).  

However, this was done with further transformation and normalization that isn’t natively 
supported by ASCAT. There is also unfortunately no consensus on how to process ASCAT data into 
GISTIC format when done individually. However, a paper by Renault et al. (2017) may solve the 
problem as they have an integrated pipeline for CNV analysis using both microarray and whole 
genome/exome sequencing. Although the package's dependencies are largely deprecated, 
necessitating the use of Docker, managing Docker itself represents a separate task beyond the scope of 
this report. 
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V. SELF REFLECTION 
This internship, for me personally, is something of a new experience. Blessed with the 

opportunity to go abroad, I went to another country known for their work ethics and leading 
technology in the field of semiconductor which contrast the sometimes old settings of Taipei, where I 
stayed. However, they are not an english speaking country with almost no english skills, as is 
commonly in east asian countries, which leads me to picking up some very basic mandarin skills of 
which I am grateful for. 

As I mentioned previously, I stayed in Taipei city where the capital of Taiwan is located. The 
specific institution I interned In was Taipei medical University or shortened as TMU, which is very 
heavily focused in medicine, especially in cancer research with them having five hospitals located 
around Taipei. Due to this, I am very much immersed with the latest research in trying to treat cancer 
as the specific department I am placed in was the Graduate Institute for Cancer Research and Drug 
Discovery.  

The specific project I am assigned with was breast cancer research with a focus on the 
genomics side for analysis. As can be read in detail in the literature review section, I am tasked with 
finding copy number data from in silico genomics analysis of cancer patients. As cancer is a topic 
rarely covered in the Bioinformatics major, I was a bit stuck in the working of the project. However, 
several courses have prepared me for this such as Genomics, Epigenetics, coding classes such as R 
and python, and also several projects that are held as part of the class. They mostly helped in the 
critical thinking and problem solving department as no course actually taught what to do and what to 
use for copy number. But for the machine learning part, the courses in Python and Ai in Life Sciences 
certainly helped a lot for the machine learning department. 

 I also wanted to highlight the usefulness of the course BM3115 Functional Genomics and 
Proteomics for my project as they certainly gave a lot of context and background, not for this project 
but the side project assigned to me. Aside from that main project, the PI in TMU often asked for help 
in analyzing wet lab data, specifically analysis of sequencing data which is preceded by wet lab 
experiments done in house. Through this course and the Genomics course I was able to have the 
mindset for both wet lab and dry lab which allows for better interpretation of the data. However the 
courses did not have anything that can be implemented as Genomics mainly handles DNA while I 
worked on RNA, and Functional Genomics and Proteomics only gives the theory. 

As the courses have not given any concrete methodology that can be replicated, I mostly have 
to search and do everything by myself and take a lot of time just reading and troubleshooting. This is 
why compared to i3L students in the department, my project took longer as I have no basis to work on 
from both i3L and TMU. Because of this, I gained new skills and learned a lot in Genomics analysis 
for RNA and what analysis I should do while for the copy number itself, I gained both knowledge in 
how and what to correlate copy number with the possibility of breast cancer prognosis. 

Aside from that, the programs and events held by i3L also helped in giving a glimpse of how 
work would be done and how to hold myself with others. Because of this I was able to work in a 
timely manner and also able to help some of my lab mates and finish some of the work assigned to 
me. I am truly grateful for the opportunity to meet; help; and in some cases, teach some on how to do 
In silico analysis for their data. 
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VI. CONCLUSION 
The results shown in this report suggest and also proves that the use of machine learning is 

possible in trying to determine copy number events from a data set of 100 patient data. But, the best 
accuracy reported, that is 97 %, should be taken with a grain of salt as with every machine model that 
is shown here or that has been utilized in real life. This is because, to implement this in the clinical 
setting, there is a need to further improve the model whilst also adding more data with cross validation 
score achieving high numbers. The additions of the data will bring more credibility for the algorithm 
whilst simultaneously refining the model to achieve better results. This would certainly require a lot of 
time and effort as the samples collected must be normalized and then be processed through a variety 
of segmentation algorithms. 

Several suggestions on what could be improved is by using a different target such as 
predicting the value of nAraw and nBraw as those directly contribute to the state of the copy number. 
Classification of the CNV can also be expanded whilst also taking account different ploidy status of 
the cancer genome as the classes specified in this report are a very generalized one assuming a diploid 
genome. Another interesting thing would be to directly predict the signal value given by the 
microarray, however that is still very far in the future. As such, using the current pipeline built would 
be a good step in the right direction in analyzing more copy number data in the hopes that they could 
be used to train new models. 
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Supplementary Figure 1.  Visualization of CNV using CINdex across the genome with threshold 
(gain = 2.1 and loss = 1.9). A) normalized amplification events; B) normalized deletion event; C) 

normalized sum event. 
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Supplementary Figure 2. Visualization of CNV using CINdex across the genome with threshold (gain 
= 2.5 and loss = 1.5). A) unnormalized amplification events; B) unnormalized deletion event; C) unnormalized 

sum event. 
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Supplementary Figure 3.  Visualization of CNV using CINdex across the genome with threshold (gain = 2.25 
and loss = 1.75). A) unnormalized amplification events; B) unnormalized deletion event; C) unnormalized sum 

event. 

 
Supplementary Figure 4.  Original Data Result of Missingno package depicting the missing values found in 

the original dataset.  
 

Supplementary Table 1. LazyPredict results before stratification 

Model Accuracy Balanced 
Accuracy 

ROC 
AUC 

F1 
Score 

Time 
Taken 

LGBMClassifier 0.63 0.55 None 0.62 0.80 

XGBClassifier 0.62 0.54 None 0.61 0.36 

BaggingClassifier 0.57 0.50 None 0.57 0.22 

KNeighborsClassifier 0.57 0.49 None 0.56 0.03 

LinearDiscriminantAnalysis 0.57 0.49 None 0.56 0.02 

DecisionTreeClassifier 0.55 0.48 None 0.55 0.04 

SVC 0.60 0.48 None 0.56 0.80 

RandomForestClassifier 0.55 0.47 None 0.54 0.43 

LogisticRegression 0.57 0.47 None 0.55 0.05 

RidgeClassifier 0.58 0.46 None 0.54 0.02 

RidgeClassifierCV 0.58 0.46 None 0.54 0.02 

CalibratedClassifierCV 0.57 0.46 None 0.54 0.91 

46 



FR-i3L-3.0.4 Rev.2 

LinearSVC 0.57 0.46 None 0.54 0.22 

SGDClassifier 0.53 0.45 None 0.52 0.18 

AdaBoostClassifier 0.56 0.45 None 0.53 0.21 

NuSVC 0.58 0.44 None 0.53 0.99 

ExtraTreeClassifier 0.50 0.44 None 0.51 0.02 

ExtraTreesClassifier 0.50 0.43 None 0.50 0.45 

QuadraticDiscriminantAnalysis 0.40 0.43 None 0.42 0.02 

NearestCentroid 0.42 0.43 None 0.43 0.01 

Perceptron 0.48 0.42 None 0.47 0.02 

LabelSpreading 0.48 0.41 None 0.48 0.60 

LabelPropagation 0.48 0.41 None 0.47 0.39 

GaussianNB 0.35 0.41 None 0.35 0.02 

BernoulliNB 0.45 0.40 None 0.45 0.02 

PassiveAggressiveClassifier 0.46 0.40 None 0.46 0.04 

DummyClassifier 0.43 0.25 None 0.26 0.01 

 
Supplementary Table 2. LazyPredict results after SMOTE 

Model Accuracy Balanced 
Accuracy 

ROC 
AUC 

F1 
Score 

Time 
Taken 

XGBClassifier 0.72 0.72 None 0.72 0.39 

LGBMClassifier 0.71 0.71 None 0.71 0.84 

BaggingClassifier 0.71 0.71 None 0.71 0.52 

RandomForestClassifier 0.69 0.69 None 0.69 0.88 

ExtraTreesClassifier 0.68 0.68 None 0.68 0.89 

SVC 0.67 0.67 None 0.68 2.90 

NuSVC 0.67 0.66 None 0.67 4.21 

DecisionTreeClassifier 0.66 0.66 None 0.66 0.09 

LabelPropagation 0.65 0.65 None 0.65 1.54 
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KNeighborsClassifier 0.65 0.65 None 0.65 0.05 

LabelSpreading 0.65 0.65 None 0.65 2.22 

ExtraTreeClassifier 0.62 0.62 None 0.62 0.03 

LogisticRegression 0.59 0.59 None 0.59 0.10 

LinearSVC 0.58 0.58 None 0.58 1.42 

CalibratedClassifierCV 0.58 0.58 None 0.58 4.47 

LinearDiscriminantAnalysis 0.58 0.58 None 0.58 0.04 

RidgeClassifier 0.58 0.58 None 0.58 0.03 

RidgeClassifierCV 0.57 0.58 None 0.58 0.04 

AdaBoostClassifier 0.56 0.56 None 0.56 0.40 

SGDClassifier 0.55 0.55 None 0.55 0.39 

PassiveAggressiveClassifier 0.48 0.49 None 0.48 0.06 

Perceptron 0.50 0.50 None 0.50 0.05 

NearestCentroid 0.46 0.46 None 0.46 0.02 

BernoulliNB 0.46 0.46 None 0.45 0.03 

GaussianNB 0.44 0.44 None 0.41 0.03 

QuadraticDiscriminantAnalysis 0.42 0.42 None 0.33 0.04 

DummyClassifier 0.25 0.25 None 0.10 0.02 

 
Supplementary Table 3. LazyPredict results after SMOTE+TOMEK 

Model Accuracy Balanced 
Accuracy 

ROC 
AUC 

F1 
Score 

Time 
Taken 

XGBClassifier 0.78 0.78 None 0.78 0.40 
LGBMClassifier 0.77 0.77 None 0.77 0.86 

BaggingClassifier 0.76 0.76 None 0.76 0.45 

RandomForestClassifier 0.76 0.76 None 0.76 0.76 

ExtraTreesClassifier 0.75 0.75 None 0.75 0.75 

DecisionTreeClassifier 0.73 0.73 None 0.73 0.08 
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SVC 0.71 0.71 None 0.71 2.19 

ExtraTreeClassifier 0.69 0.69 None 0.69 0.03 

KNeighborsClassifier 0.69 0.69 None 0.69 0.05 

LabelPropagation 0.69 0.68 None 0.68 1.27 

LabelSpreading 0.69 0.68 None 0.68 1.74 

NuSVC 0.68 0.68 None 0.68 3.31 

LogisticRegression 0.63 0.63 None 0.63 0.10 

CalibratedClassifierCV 0.62 0.62 None 0.62 4.21 

RidgeClassifierCV 0.62 0.62 None 0.62 0.04 

RidgeClassifier 0.61 0.61 None 0.61 0.02 

LinearSVC 0.61 0.61 None 0.61 1.07 

LinearDiscriminantAnalysis 0.61 0.61 None 0.61 0.04 

AdaBoostClassifier 0.58 0.58 None 0.58 0.35 

SGDClassifier 0.58 0.58 None 0.58 0.31 

Perceptron 0.52 0.52 None 0.51 0.05 

PassiveAggressiveClassifier 0.51 0.51 None 0.51 0.07 

NearestCentroid 0.46 0.46 None 0.45 0.02 

BernoulliNB 0.44 0.45 None 0.44 0.03 

QuadraticDiscriminantAnalysis 0.43 0.44 None 0.33 0.03 

GaussianNB 0.40 0.40 None 0.34 0.03 

DummyClassifier 0.25 0.25 None 0.10 0.02 

 
Supplementary Table 4. LazyPredict results after SMOTE+ENN 

Model Accuracy Balanced 
Accuracy 

ROC 
AUC 

F1 
Score 

Time 
Taken 

ExtraTreesClassifier 0.95 0.95 None 0.95 0.27 

RandomForestClassifier 0.94 0.94 None 0.94 0.29 

LGBMClassifier 0.94 0.94 None 0.94 0.83 
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XGBClassifier 0.93 0.93 None 0.93 0.33 

ExtraTreeClassifier 0.91 0.90 None 0.91 0.02 

BaggingClassifier 0.90 0.90 None 0.90 0.17 

DecisionTreeClassifier 0.90 0.90 None 0.90 0.04 

LabelSpreading 0.88 0.88 None 0.88 0.38 

LabelPropagation 0.88 0.88 None 0.88 0.27 

SVC 0.86 0.86 None 0.86 0.39 

KNeighborsClassifier 0.84 0.84 None 0.84 0.04 

NuSVC 0.83 0.83 None 0.83 0.65 

LogisticRegression 0.76 0.76 None 0.76 0.05 

LinearSVC 0.75 0.75 None 0.75 0.62 

CalibratedClassifierCV 0.75 0.75 None 0.75 2.47 

LinearDiscriminantAnalysis 0.74 0.74 None 0.74 0.02 

RidgeClassifier 0.73 0.73 None 0.73 0.02 

RidgeClassifierCV 0.73 0.73 None 0.73 0.02 

SGDClassifier 0.72 0.72 None 0.72 0.13 

Perceptron 0.69 0.69 None 0.69 0.03 

PassiveAggressiveClassifier 0.67 0.68 None 0.67 0.04 

AdaBoostClassifier 0.63 0.64 None 0.63 0.18 

QuadraticDiscriminantAnalysis 0.54 0.58 None 0.49 0.02 

NearestCentroid 0.57 0.57 None 0.57 0.01 

BernoulliNB 0.55 0.55 None 0.55 0.02 

GaussianNB 0.53 0.51 None 0.48 0.02 

DummyClassifier 0.31 0.25 None 0.15 0.01 
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